
ar
X

iv
:1

70
6.

01
26

5v
1

 [
m

at
h.

N
T

]
 5

 J
un

 2
01

7

Quadratic Frobenius probable prime tests costing two selfridges

Paul Underwood

November 8, 2021

Abstract

By an elementary observation about the computation of the difference of squares for large in-
tegers, deterministic quadratic Frobenius probable prime tests are given with running times of
approximately 2 selfridges.

1 Introduction

Much has been written about Fermat probable prime (PRP) tests [1, 2, 3], Lucas PRP tests [4, 5],
Frobenius PRP tests [6, 7, 8, 9, 10, 11, 12] and combinations of these [13, 14, 15]. These tests provide
a probabilistic answer to the question: “Is this integer prime?” Although an affirmative answer is not
100% certain, it is answered fast and reliable enough for “industrial” use [16]. For speed, these various
PRP tests are usually preceded by factoring methods such as sieving and trial division.

The speed of the PRP tests depends on how quickly multiplication and modular reduction can
be computed during exponentiation. Techniques such as Karatsuba’s algorithm [17, section 9.5.1],
Toom-Cook multiplication, Fourier Transform algorithms [17, section 9.5.2] and Montgomery expo-
nentiation [17, section 9.2.1] play their roles for different integer sizes. The sizes of the bases used are
also critical.

Oliver Atkin introduced the concept of a “Selfridge Unit” [18], approximately equal to the running
time of a Fermat PRP test, which is called a selfridge in this paper. The Baillie-PSW test costs 1+3
selfridges, the use of which is very efficient when processing a candidate prime list. There is no known
Baillie-PSW pseudoprime but Greene and Chen give a way to construct some similar counterexam-
ples [19]. The software package Pari/GP implements a test similar to the Baillie-PSW test costing 1+2
selfridges. However, if the 2 selfridges Frobenius test presented in this paper is preceded with a Fermat
2-PRP test it also becomes 1+2 selfridges, but hitherto with the strength of a 1+1+2 selfridges test.

2 Calculation (mod n, x2 − ax + 1)

At first sight, taking a modularly reduced power of x would appear to be more efficient than taking a
modularly reduced power of something more complicated, but this turns out to be false for the case
presented here.

For most probable prime tests it is known that the given mathematical structures always work for
primes and rarely work for composite numbers. Throughout this paper we are primarily concerned with
the quotient ring Zn[x]/(x

2−ax+1) where fn+1 ≡ g (mod n, x2−ax+1) and f and g are polynomials
in the polynomial ring Zn[x], and a is an integer. This means fn+1 − g = nF + (x2 − ax+ 1)G where
F and G are some polynomials.

There is a recursive method to reduce any integer power of x to a linear polynomial in x since, for
integer k > 1, we have xk ≡ (ax − 1)xk−2. For example, because x2 ≡ ax − 1 (mod n, x2 − ax + 1),

1

http://arxiv.org/abs/1706.01265v1

then x3 ≡ x(x2) ≡ x(ax− 1) ≡ ax2 − x ≡ a(ax− 1) − x ≡ a2x− a− x ≡ (a2 − 1)x− a. However, we
shall see below an iterative process which is by far superior to the recursive one.

For integer a, the equation x2 − ax+ 1 = 0 has discriminant ∆ = a2 − 4 and solutions x = a±
√
∆

2
.

For an odd prime p, the Jacobi symbol
(

∆
p

)

equals the Legendre symbol
(

∆
p

)

and if n is an odd

integer in general then a negative Jacobi symbol implies a negative Legendre symbol, but the same is

not guaranteed for positive Jacobi symbols. So if the Jacobi symbol
(

∆
p

)

= −1 then ∆ will not be

square modulo p, and by the Frobenius automorphism

xp ≡ a− x (mod p, x2 − ax+ 1)

so that
xp + x ≡ a (mod p, x2 − ax+ 1)
xp+1 ≡ 1 (mod p, x2 − ax+ 1).

In general, for a prime number, p, and for integers S and T :

(Sx+ T)p = Spxp + (

p−1
∑

i=1

(

p

i

)

(Sx)p−iT i) + T p

and since the indicated binomial coefficients are divisible by p and since Sp ≡ S (mod p) and T p ≡ T
(mod p) we have

(Sx+ T)p ≡ Sxp + T (mod p).

Multiplying by Sx+ T gives

(Sx+ T)p+1 ≡ (Sx+ T)(Sxp + T) (mod p)
≡ S2xp+1 + STxp + STx+ T 2 (mod p)
≡ S2xp+1 + ST (xp + x) + T 2 (mod p)
≡ S2 + aST + T 2 (mod p, x2 − ax+ 1). (∗)

In practice, left to right binary exponentiating of Sx+T to the (n+1)th power can be accomplished
with intermediate values s and t as follows. Firstly, obtain the binary representation of n+1. Secondly,
assign s = S and t = T . Thirdly, loop over bits of n+ 1, left to right, starting at the 2nd bit, squaring
the intermediate sum, sx + t, at each stage and if the corresponding bit is 1 multiply the resulting
squared intermediate sum by the base Sx+ T .

Squaring the intermediate sum is achieved with appropriate modular reductions:

(sx+ t)2 = s2x2 + 2stx+ t2

≡ s2(ax− 1) + 2stx+ t2 (mod n, x2 − ax+ 1)
≡ (as2 + 2st)x− s2 + t2 (mod n, x2 − ax+ 1)
≡ s(as+ 2t)x+ (t− s)(t+ s) (mod n, x2 − ax+ 1).

If the bit is 1 in the loop then the following must be calculated:

(sx+ t)(Sx+ T) = sSx2 + (sT + tS)x+ tT
≡ sS(ax− 1) + (sT + tS)x+ tT (mod n, x2 − ax+ 1)
≡ (asS + sT + tS)x+ tT − sS (mod n, x2 − ax+ 1).

:

If a, S and T are small then the squaring part is dominated by 2 major multiplications and 2
modular reductions: s by as + 2t modulo n, and t − s by t + s modulo n; the “if” part is relatively
faster. This makes an algorithm that is a little over 2 selfridges. The Pari/GP code for this process is

2

{general(n,a,S,T) = BIN=binary(n+1); LEN=length(BIN); aSpT=a*S+T; s=S; t=T;

for(index=2, LEN, temp=(s*(a*s+2*t))%n; t=((t-s)*(t+s))%n; s=temp;

if(BIN[index], temp=s*aSpT+t*S; t=t*T-s*S; s=temp));

return(s==0 && t==(S*S+a*S*T+T*T)%n)}

If S = 1 and T = 0 the program for computing the binary Lucas chain [17, algorithm 3.6.7] is
quicker, being 2 selfridges:

{lucas_chain(n,a) = BIN=binary(n); LEN=length(BIN); va=2; vb=a;

for(index=1, LEN,

if(BIN[index], va=(va*vb-a)%n; vb=(vb*vb-2)%n, vb=(va*vb-a)%n; va=(va*va-2)%n));

return(va==a && vb==2)}

3 Equivalence of Tests

The main test (∗) for an odd number n, presumed to be prime, with Jacobi symbol
(

∆
n

)

= −1, is

(Sx+ T)n+1 ≡ S2 + aST + T 2 (mod n, x2 − ax+ 1)

and, by checking the discriminant, it is equivalent to

yn+1 ≡ S2 + aST + T 2 (mod n, y2 − (aS + 2T)y + S2 + aST + T 2).

Let P = aS + 2T and Q = S2 + aST + T 2 and the matrix

A =

(

P −Q
1 0

)

.

Note that, for our presumed prime n, yn+1 ≡ Q (mod n, y2 − Py +Q) if and only if An+1 ≡ Q ∗ I
(mod n), where I is the 2 by 2 identity matrix. Using the multiplicative property of determinants for
square matrices X and Y that |X ∗ Y | = |X||Y |, we can ascertain that |An+1| = |A|n+1 = Qn+1 and
|Q ∗ I| = Q2. Thus Qn−1 ≡ 1 modulo n, since we assume gcd(PQ,n) = 1.

By Euler’s criterion Q
n−1

2 ≡
(

Q
n

)

modulo n if n is prime; That is n is Euler Q-PRP. An implied 2

selfridges binary Lucas chain test can be shown to exist by letting M = A2

Q∗I and then

M
n+1

2 ≡
An+1

Q
n+1

2 ∗ I
≡

Q ∗ I

Q
n+1

2 ∗ I
≡

I

Q
n−1

2 ∗ I
≡

I
(

Q
n

)

∗ I
≡
(Q

n

)

∗ I (mod n).

By the Cayley-Hamilton Theorem: Any 2 by 2 matrix X satisfies its own characteristic equation
z2 − trace(X)z + determinant(X) = 0. Given that

M =

(

P 2

Q
− 1 −P
P
Q

−1

)

we can therefore deduce that

z
n+1

2 ≡
(Q

n

)

(mod n, z2 − (
P 2

Q
− 2)z + 1).

The number 21 with a = 6, S = 10 and T = 4, and so P = 68 ≡ 5 (mod 21) and Q = 356 ≡ 20
(mod 21), is an example composite that passes the Euler PRP test but not the binary Lucas chain
test. For a vice versa example: composite 27 with a = 6, S = 1 and T = 7, so that P = 20 (mod 27)
and Q = 92 ≡ 11 (mod 27), passes the binary Lucas chain test but not the Euler PRP test.

3

4 The Main Algorithm for S = 1 and T = 2

A test is now presented that is a little over 2 selfridges. In comparison to the binary Lucas chain
algorithm for a binary representation with an average number of ones and zeroes, the presented test
requires an extra 7 operations per loop iteration of multiple precision word additions or multiplications
of multiple precision words by small numbers. Branching the code to handle the cases where a = 0 and
a = 1 will reduce the extra operation count to 5 and 6 respectively. Perhaps the biggest difference in
running times for the various PRP tests is that a Fermat PRP is dominated by a modularly reduced
squaring per loop iteration; the binary Lucas chain test requires a modularly reduced squaring and a
modularly reduced multiplication in its loop iteration; and the test presented in this section requires
2 modularly reduced multiplications per loop iteration. As an example of this difference, if Fourier
Transform arithmetic is used, only 1 forward transform is required for a squaring operation, whereas
2 are required for multiplication.

For a candidate odd prime n, a minimal integer a ≥ 0 such that the Jacobi symbol
(

a2−4
n

)

= −1 is

sought. Then there is no ambiguity about how the algorithm works, there is no randomness. If, while

searching for a minimum a, a value is found such that the Jacobi symbol
(

a2−4
n

)

= 0 then clearly

n is not prime, but this is unlikely to occur if sieving or trial division is performed firstly. Another
reason for choosing a minimal a is that there is more likelihood that the Jacobi symbol will be 0 for
the numerous candidates with small factors. The time taken to test a Jacobi symbol is negligible, but
some time can be saved by testing a chosen in order from

0, 1, 3, 5, 6, 9, 11, 12, 13, 15, 17, 19, 20, 21, 24, 25, 27, 29, 30, 31, 32 . . .

Clearly, 2 is to be omitted from this list. a = 4 is omitted because it is covered by a = 0 and a = 1.

a = 7 is omitted since
(

32−4
n

)

=
(

72−4
n

)

, and so on. Also, if a candidate prime equal to 1 modulo 8

is a square number then a Jacobi symbol equal to −1 will not be found. So it is recommended that a
squareness test, which is rapid, is computed near the beginning. To ensure the implications of section
3, the following is screened for:

gcd((a+ 4)(2a + 5), n) = 1.

On finding a Jacobi symbol equal to −1 the following test can be done:

(x+ 2)n+1 ≡ 2a+ 5 (mod n, x2 − ax+ 1).

The Pari/GP code for this process is

{selfridge2(n,a) = BIN=binary(n+1); LEN=length(BIN); ap2=a+2; s=1; t=2;

for(index=2, LEN, temp=(s*(a*s+2*t))%n; t=((t-s)*(t+s))%n; s=temp;

if(BIN[index], temp=ap2*s+t; t=2*t-s; s=temp));

return(s==0 && t==(2*a+5)%n)}

Using primesieve [20] and the GMP library [21], verification of the algorithm was pre-screened with
the implied Fermat PRP test (2a + 5)n−1 ≡ 1 (mod n). For odd n < 250 there were 1,518,678 such
pseudoprimes. The maximum a required was 81, for n = 170557004069761. However, none that passed
pre-screening were a pseudoprime for the full algorithm when run under Pari/GP [22].

By examining the operations and their counts in the general test, it was decided by the author that
the choice of S = 1 and T = 2 was optimal. Moreover, one possible improvement in running times
might be achieved by using S = 1 and T = 1 for values of 2 < a < n − 2, resulting in a hybrid test:
Base x+ 2 could be used for a = 0 or a = 1 and base x+ 1 used otherwise.

4

5 Conclusion

We have seen how the algorithm in section 4 is effective for candidate odd primes less than 250. No
error rate bounds were examined but no failing pseudoprimes have been found. Exploration of other
S and T value pairs was not done.

When implemented, a base x + 2 Frobenius quadratic test costs about 2.5 selfridges which, when
combined with a preceding one selfridge Fermat 2-PRP test, is not quite as fast as Pari/GP’s “ispseu-
doprime” function, but it is faster by itself when testing a single sufficiently large number suspected
of being prime. At the very large scale there is a handicap, especially when fast Fourier arithemetic
comes into play because there are more forward transforms to be computed for using multiplications
as opposed to using squaring operations.

The Baillie-PSW test uses two independent tests: a strong Fermat 2-PRP test and a specific strong
Lucas PRP test, whereas the test given in section 4 depends on one parameter, a. Can this difference
influence reliability?

Figure 1 is a plot of pseudoprimes of the algorithm given in section 4 but for freely ranging a and
odd n < 2 · 107. This leaves us with another question: “Does a minimum a for a pseudoprime ever
come close to the minimum a required by the algorithm?” A pseudoprime with a value of a under say
n

1

4 is extremely rare. There is no such a for odd n < 232.

2

4

6

8

10

12

14

0 5 10 15 20

ln(a)

n (millions)

ln of max a used in the algorithm over this domain

Figure 1: Pseudoprimes for S=1 and T=2

6 Acknowledgements

I thank Vincent Diepeveen for helping me code C/C++ and for allowing me to use his prime sieving
function. Thanks too to members of mersenneforum.org and Yahoo! primenumbers groups for their
encouraging remarks, in particular Carlos Pinho, Maximilian Hasler and Dana Jacobsen.

5

References

[1] C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., “The pseudoprimes to 25 ·109”, Mathematics of Computation,
vol. 35, no. 151, pp. 1003–1026, 1980.

[2] M. O. Rabin, “Probabilistic algorithm for testing primality”, Journal of Number Theory, vol. 12, no. 1, pp. 128–138,
1980.

[3] S. H. Kim and C. Pomerance, “The probability that a random probable prime is composite”, Mathematics of
Computation, vol. 53, no. 188, pp. 721–741, 1989.

[4] F. Arnault, “The Rabin-Monier theorem for Lucas pseudoprimes”, Mathematics of Computation, vol. 66, no. 218,
pp. 869–881, 1997.

[5] H. C. Williams, Édouard Lucas and Primality Testing, Wiley-Interscience, 1998.

[6] J. Grantham, “A Frobenius probable prime test with high confidence”, Journal of Number Theory, vol. 72, pp. 32–47,
1998.

[7] J. Grantham, “Frobenius pseudoprimes”, Mathematics of Computation, vol. 70, pp. 873–891, 2001.

[8] S. Müller, “A probable prime test with very high confidence for n equiv 1 mod 4”, Proceedings of the 7th International
Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology, pp. 87–
106, 2001.

[9] I. B. Damg̊ard and G. S. Frandsen, “An extended quadratic Frobenius primality test with average and worst
case error estimates”, Lecture Notes in Computer Science. Fundamentals of Computation Theory (Springer Berlin
Heidelberg), vol. 2751, pp. 118–131, 2003.

[10] M. Seysen, “A Simplified Quadratic Frobenius Primality Test”, Cryptology ePrint Archive, Report 2005/462,
https://eprint.iacr.org/2005/462

[11] D. Loebenberger, “A simple derivation for the Frobenius pseudoprime test”, Cryptology ePrint Archive, Report
2008/124, https://eprint.iacr.org/2008/124

[12] S. Khashin, “Counterexamples for Frobenius primality test”, eprint arXiv:1307.7920, 2013.

[13] R. Baillie and S. S. Wagstaff, Jr., “Lucas pseudoprimes”, Mathematics of Computation, vol. 35, pp. 1391–1417,
October 1980.

[14] C. Pomerance, “Are there counterexamples to the Baillie-PSW primality test?”,
http://www.pseudoprime.com/dopo.pdf, 1984.

[15] Z. Zhang, “A one-parameter quadratic-base version of the Baillie-PSW probable prime test”, Mathematics of Com-
putation, vol. 71, no. 240, pp. 1699–1734, 2002.

[16] C. Caldwell, “Probable Prime”, http://primes.utm.edu/glossary/xpage/PRP.html, 1999-2017.

[17] R. Crandall and C. Pomerance, Prime Numbers, A Computational Perspective, 2nd Ed. Springer, 2005.

[18] A. O. L. Atkin., “Intelligent primality test offer”, Computational Perspectives on Number Theory (D. A. Buell and
J. T. Teitelbaum, eds.), Proceedings of a Conference in Honor of A. O. L. Atkin, International Press, pp. 1–11,
1998.

[19] J. R. Greene and Z. Chen, “Want to earn some cash the hard way?”,
http://www.d.umn.edu/~jgreene/baillie/Baillie-PSW.html .

[20] “primesieve”, http://primesieve.org

[21] “The Gnu Multiple Precision arithmetic library”, https://gmplib.org

[22] “Pari/GP”, http://pari.math.u-bordeaux.fr

E-mail address: paulunderwood@mindless.com

6

https://eprint.iacr.org/2005/462
https://eprint.iacr.org/2008/124
http://arxiv.org/abs/1307.7920
http://www.pseudoprime.com/dopo.pdf
http://primes.utm.edu/glossary/xpage/PRP.html
http://www.d.umn.edu/~jgreene/baillie/Baillie-PSW.html
http://primesieve.org
https://gmplib.org
http://pari.math.u-bordeaux.fr

	1 Introduction
	2 Calculation8mu(mod6mun,x2-ax+1)
	3 Equivalence of Tests
	4 The Main Algorithm for S=1 and T=2
	5 Conclusion
	6 Acknowledgements

