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Chapter 1

Nomenclature

1.1 Numbers

The easiest numbers to understand are the counting numbers 1, 2, 3, . . . which mathemati-
cians refer to as the natural numbers. These may be split up into those that are divisible by
a smaller number greater than 1, and those that are not. For instance, 4 can be written as
2×2 but 3 can only be written as a product involving itself and a unit, that is 1. Numbers
that are indivisible are called prime numbers . Apart from the unit, the rest, the ones that
can be written as a product of two smaller numbers are called composite numbers .

We can extend the natural numbers to include negative numbers and zero to form
integer numbers or more succinctly the integers

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .

which have unique factorisation .
To cope with fractions of whole numbers we extend the integers. This new collec-

tion is called the quotients . The top, the numerator, is an integer and the bottom, the
denominator, is a natural number.

Some numbers cannot be represented by quotients. Such numbers are called irrational
numbers . For example the number which when multiplied by itself is 2, the square root,
represented by

√
2 . To see this, suppose

√
2 = a

b
. We now square both sides of the equality

to get 2 = a2

b2
. Now multiply both sides by b2 to get 2b2 = a2 . We now have a contradiction

since the number of 2’s is imbalanced because of the unique factorisation there must be an
odd number of them that divide the left side of the equality and even number of them that
divide the right. Our assumption that

√
2 could be written as a fraction of whole numbers

was wrong.
Together with the rational numbers the irrational numbers make up the real numbers

or more simply the reals . By considering the numbers so far introduced as distances from
a point on a straight line which stretches infinitely in both directions and using a standard
unit of measure we can plot the whole line.

To cope with numbers such as the one which when multiplied by itself is −1 we need
to extend the reals. Let i2 = −1 where i is the imaginary unit.

5



6 CHAPTER 1. NOMENCLATURE

Complex numbers consist of a real term and an imaginary term. For example,
√
−4 is

totally imaginary. It is represented by 0 + i2 or 0− i2.
We can add and multiply complex numbers. For addition:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d).

Remembering that i2 = −1, multiplication is:

(a+ ib)(c+ id) = (ac− bd) + i(bc+ ad).

Complex numbers can be represented by a point on a plane surface. We map the real
component in one direction (say left to right) and the imaginary component in the other
direction (down to up). Thus every point on the plane corresponds to one complex number
and every complex number is represented by a point on the plane.

Other number systems can be created, so long as we give a definition of what they are
and how they operate.

1.2 Sets

A set is a collection of things. This book is only concerned with sets of numbers and sets
of matrices of numbers. Sets may be unordered and may not have repeating elements.

Throughout this text sets are represented by math capital letters or a list enclosed
in braces. For example the set of all natural numbers can be represented as N or as
{1, 2, 3, 4, 5, . . .}.

An element is represented as belonging to a set with the symbol ∈ . To express that
something does not belong we use ̸∈ . For example 1 ∈ N but 1

2
̸∈ N .

A set may be constructed by removing all the elements of one set from another. This
set difference is represented with the symbol \ .The set of all counting numbers except 2
and 3 may be represented by {1, 4, 5, 6, 7, 8, . . .} or N \ {2, 3} .

To express that all elements of a set are to be considered we use the symbol ∀ , which
is read as for all. By way of example,to express that all counting numbers are equal to
themselves we could write:

(∀x ∈ N) x = x.

To show the existence of at least one member we use the symbol ∃ .We could state that
there is at least one counting number equal to itself by:

(∃x ∈ N) x = x.

1.3 Groups

A group G is a set together with a binary operation, denoted with the ◦ symbol, which acts
on any two (maybe identical) members of the set whose result is also a member of the set:

(∀f, g ∈ G) f ◦ g ∈ G.
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A group is associative . That is:

(∀f, g, h ∈ G) f ◦ (g ◦ h) = (f ◦ g) ◦ h.

A group has an identity which when operated with a member of the set has no effect.

(∃e ∈ G)(∀g ∈ G) e ◦ g = g ◦ e = g.

Also each element has an inverse :

(∀g ∈ G)(∃g∗ ∈ G) g ◦ g∗ = e.

Addition of counting numbers does not form a group because there is no identity ele-
ment: ( ̸ ∃0 ∈ N) g + 0 = g .

Addition of whole numbers both positive and negative, the integers Z, does form a
group. To see this we need to check the conditions for a group:

• Z is a set.

• + is a valid operator on the set.

• closure: (∀a, b ∈ Z) a+ b ∈ Z.

• associativity: (∀a, b, c ∈ Z) a+ (b+ c) = (a+ b) + c.

• identity: (∃0 ∈ G)(∀a ∈ Z) a+ 0 = 0 + a = a.

• inverse: (∀a ∈ Z)(∃(−a) ∈ G) a− a = 0.

An Abelian group is one in which the operation commutes :

(∀g, f ∈ G) f ◦ g = g ◦ f.

1.4 Rings

A ring is a set together with two operators which act on any two (maybe identical) elements
of the set. The operators are usually denoted by + and ×. There are many kinds of rings.
The rules that govern addition and multiplication vary between these rings.

Formally, a commutative ring with identity S is an abelian group both under addition
and multiplication, and obeys the distributive law :

1. S is a set.

2. + and × are a valid operators on the set.

3. additive closure : (∀a, b ∈ S) a+ b ∈ S.

4. additive associativity : (∀a, b, c ∈ S) a+ (b+ c) = (a+ b) + c.
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5. additive identity : (∃0 ∈ S)(∀a ∈ S) 0 + a = a+ 0 = a.

6. additive inverse : (∀a ∈ S)(∃(−a) ∈ S) a− a = 0.

7. additive commutativity : (∀a, b ∈ S) a+ b = b+ a.

8. multiplicative closure : (∀a, b ∈ S) a× b ∈ S.

9. multiplicative associativity : (∀a, b, c ∈ S) a× (b× c) = (a× b)× c.

10. multiplicative identity : (∃1 ∈ S)(∀a ∈ S) 1× a = a× 1 = a.

11. multiplicative commutativity : (∀a, b ∈ S) a× b = b× a.

12. distributive laws : (∀a, b, c ∈ S) a × (b + c) = (a × b) + (a × c) and (b + c) × a =
(b× a) + (c× a).

If we relax condition 10 and 11 the ring is called just a ring. With just condition 10
dropped the ring is called a commutative ring . Apart from a ring with one element, the
units of a commutative ring form an Abelian group called the center.

1.5 Fields

A field is a commutative ring with identity in which every non zero element has a multi-
plicative inverse. To our definition of a ring we need only add:

(∀x ∈ S \ {0})(∃x−1) x× x−1 = 1

where 1 ̸= 0.

1.6 Modular Arithmetic

Modular arithmetic is the arithmetic of remainders. It makes no difference whether we
make a modular reduction prior to or after a calculation. Numbers are equivalent to one
another if the remainders when divided by the modulo number are the same. For example,
six is equivalent to one modulo five. This is expressed as:

6 ≡ 1 (mod 5).

In fact all the numbers in the set {. . .−9,−4, 1, 6, 11 . . .} are equivalent modulo five.
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1.7 Matrices

An n by n square matrix is an arrangement into a grid of n2 elements. It is easiest to start
with 2 by 2 matrices. Let

A =

(
a b
c d

)
.

Multiplication by a scalar v of the matrix A is equal to the matrix with each of its
elements multiplied by v:

v

(
a b
c d

)
=

(
va vb
vc vd

)
.

Addition of two matrices is equal to the matrix which is formed by adding element
wise:

(
a b
c d

)
+

(
e f
g h

)
=

(
a+ e b+ f
c+ g d+ h

)
.

Multiplication is the result:

(
a b
c d

)
×
(

e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
.

The determinant of a matrix A is |A| = ad− bc and the trace of a matrix is sum of the
diagonal elements.
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1.8 Symbols

a :: b ratio of a to b.
gcd(a, b) greatest common divisor of a and b.
a ∧ b greatest common divisor of a and b.
a | b a divides into b exactly.

a ≡ b (mod n) a and b have the same remainder when divided by n.
∃x existential quantification of x, there exists x.
∀x universal quantification of x, for all x.

a ∈ S a is a member of the set S.
S \ T set difference of S and T .
P set of all prime natural numbers.
N set of all natural i.e. all positive whole numbers.
Z set of all integer i.e. both positive and negative whole numbers.
Q set of all rational i.e. a ratio of integer numbers over natural numbers.

R set of all real numbers needed to account for numbers such as
√
2.

I set of all imaginary numbers that are real numbers multiplied by i .
C set of all complex numbers which are pairs of real and imaginary numbers.
i imaginary unit where i2 = −1.

A⊗ B multiplication of two matrices A and B.
In n by n identity matrix.

Tr(A) sum of the diagonal elements of the matrix A, the trace.
|A| determinant of the matrix A.
−a negative a.
a+ b a added to b.
a− b a minus b.
a.b a multiplied by b.
a× b a multiplied by b.

a
b

a divided by b.
a−1 the reciprocal of a equivalent to 1

a
.

a = b a equals b.
(a/b) Legendre/Jacobi/Kronecker Symbol of a over b.
J(a, b) Jacobi Symbol of a over b.
< a, b > ordered pair of a and b.
X ⇒ Y proposition X logically implies Y .

Σ sum of.∏
product of.



Chapter 2

Euclid

2.1 Primes

A prime number is number which has two smaller factors. Any natural number that has
proper factors is said to be composite. For example four is two times two and therefore is
composite, but three has only itself and one as factors and so is prime. One is a special
case and is called a unit.

A natural number greater than one can be decomposed into its constituent prime factors.
Any one arrangement of those factors can be mapped to another arrangement. That is
to say that any natural number can be decomposed into its prime factors uniquely apart
from order. For example, six is two times three is three times two, but the only proper
prime factors of six are two and three. That is not to say that we may have repeated prime
factors.

n = pk11 × . . .× pkii .

Any sum (or difference) of numbers each divisible by a prime is also itself divisible by
that prime. We factor out the prime from each number and use the distributive law to
show that the prime divides the sum:

n = a.p+ b.p+ c.p = (a+ b+ c).p.

Euclid showed that there are infinitely many prime numbers. He argued that if we
multiplied together all of the primes from a set of supposedly finite set of primes and add
one then the resulting number would be impossible.

n = (p0 × p1 × p2 . . .× plimit) + 1.

We see that any prime pk dividing n must be chosen from our known set of primes
{p0, p1, p2 . . . plimit}. Then since pk also divides the product p0 × p1 × p2 . . . × plimit it
divides the difference namely 1. This is a contradiction to pk being prime.

Also any prime dividing a product of numbers must divide at least one of them:

(p | n = a.b) ⇒ (p | a) and/or (p | b).

11
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2.2 Euclid’s Algorithm

Given two numbers, what is the largest number that would divide both of them:

gcd(a, b) =?

We assume without loss of generality that a is greater than or equal to b:

a ≥ b.

If a and b are equal then clearly the largest number dividing both of these is also equal:

(∀a, b ∈ N) (a = b) ⇒ (gcd(a, b) = a).

On the other hand, if a is greater than b, a is equal to a maximal number qmax of b s plus
a remainder:

a = qmax0 .b+ r0. (2.1)

Here we see that the greatest common divisor (gcd), also called the highest common factor,
of a and b must also divide the remainder, r0 :

(∀a, b ∈ N)(∃xmax, r0 ∈ N) (xmax | a)(xmax | b) ⇒ (xmax | r0).

If r0 = 0 then gcd must divide both a and the b. The gcd is then b since b is assumed to
be smaller than a and we can stop there.

Otherwise we can continue recursively. The gcd of a and b is also the gcd of b and the
remainder r0. We repeat the process with b and r0:

b = qmax1 .r0 + r1.

Notice that problem is a reduced one: the pair of numbers b and r0 are smaller than a and
b since r0 is less than b. Thus at some stage the process must come to an end:

r0 = qmax2 .r1 + r2

r1 = qmax3 .r2 + r3
...

ri−4 = qmaxi−2
.ri−3 + ri−2

ri−3 = qmaxi−1
.ri−2 + ri−1

ri−2 = qmaxi
.ri−1 + ri

The process comes to an end with ri = 0 i.e.

ri−2 = qmaxi
.ri−1.
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6
6 14 14 14

48

48

48

158 158

Figure 2.1: Geometric representation of Euclid’s Algorithm for the ratio 158 :: 364

Therefore, working back up the algorithm we see that the gcd ri−1 is the gcd of ri−1 and
ri−2, and is the gcd of ri−2 and ri−3 and so on, and consequently is the gcd of a and b.
Thus the gcd is the last non-zero remainder:

gcd(a, b) = ri−1.

For example, Euclid’s algorithm to find the greatest common divisor for the pair of numbers
364, 158 is:

364 = 2× 158 + 48

158 = 3× 48 + 14

48 = 3× 14 + 6

14 = 2× 6 + 2

6 = 3× 2 + 0

The greatest common divisor is therefore 2 or written mathematically:

gcd(364, 158) = 2.

2.3 Back Substitution

In the preceding section it was shown that the last non-zero remainder in Euclid’s Algorithm
is the greatest common divisor. We can write qmaxi

as qi, assuming we are taking the
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maximum value:

a = q0.b+ r0

b = q1.r0 + r1

r0 = q2.r1 + r2

r1 = q3.r2 + r3
...

ri−4 = qi−2.ri−3 + ri−2

ri−3 = qi−1.ri−2 + ri−1

ri−2 = qi.ri−1 + 0

We now rewrite the above as:

r0 = a− b.q0.b

r1 = b− q1.r0

r2 = r0 − q2.r1

r3 = r1 − q3.r2
...

ri−3 = ri−5 − qi−3.ri−4 (2.2)

ri−2 = ri−4 − qi−2.ri−3 (2.3)

ri−1 = ri−3 − qi−1.ri−2 (2.4)

0 = ri−2 − qi.ri−1 (2.5)

We can substitute ri−2 in equation 2.3 into equation 2.4:

ri−1 = ri−3 − qi−1(ri−4 − qi−2.ri−3).

Note that equation 2.3 is now written in terms of ri−3 and ri−4. We can replace ri−3 with
the right hand side of the equation 2.2. Repeating the processes we will end with:

ri−1 = Xa+ Y b

for some X and Y .

For example given a = 167 and b = 105 what is:

a ∧ b = Xa+ Y b?
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Firstly use Euclid’s Algorithm:

167 = 1× 105 + 62

105 = 1× 62 + 43

62 = 1× 43 + 19

43 = 2× 19 + 5

19 = 3× 5 + 4

5 = 1× 4 + 1

4 = 4× 1 + 0 (2.6)

Rearrange the above:

62 = 167− 1× 105 (2.7)

43 = 105− 1× 62 (2.8)

19 = 62− 1× 43 (2.9)

5 = 43− 2× 19 (2.10)

4 = 19− 3× 5 (2.11)

1 = 5− 1× 4 (2.12)

0 = 4− 4× 1 (2.13)

Substituting 4 from equation 2.11 into equation 2.12 we have:

1 = 5− 1(19− 3× 5)

rearranging terms:
1 = 4× 5− 19

substituting 5 from equation 2.10 we have:

1 = 4(43− 2× 19)− 19

rearranging terms:
1 = 4× 43− 9× 19

substituting 19 from equation 2.9:

1 = 4× 43− 9(62− 1× 43)

rearranging terms:
1 = 13× 43− 9× 62

substituting 43 from equation 2.8:

1 = 13(105− 1× 62)− 9× 62
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rearranging terms:
1 = 13× 105− 22× 62

substituting 62 from equation 2.7:

1 = 13× 105− 22(1× 167− 105)

rearranging terms:
1 = 35× 105− 22× 167

checking we see that indeed:
1 = 3675− 3674

therefore X = 35 and Y = −22

2.4 Field Inverse

In the preceding sections we have shown how to compute

a ∧ b = aX + bY.

Now if b is prime and b does not divide a we have:

a ∧ b = 1

and since b divides bY we have:

1 ≡ aX (mod b).

That is X is the inverse of a modulo prime b
To find X we compute Euclid’s Algorithm for a and b, then use back substitution to

find X.
In the previous section we showed that:

105 ∧ 167 = 35× 105− 22× 167.

Given that 167 is prime and 167 does not divide 105, we see that:

1 ≡ 35× 105 (mod 167).

Dividing by 105 we have:
105−1 = 35 (mod 167).
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Pythagoras

A right-angled triangle is a triangle with one square corner. Pythagoras’s Theorem states
that for any right-angled triangle, the square of the side opposite the right angle equals
the sum of the squares of the other two sides. We may express this as:

x2 = y2 + z2.

There are infinitely infinite many differently shaped right angled triangles relative to
some unit measure. If any two sides have common factors the third side must have that
factor. Removal of common factors from the sides of a triangle represents a scaling down
of it. In its most scaled down version a triangle will have sides prime to one another. We
now restrict our view to all integer length Pythagorean triangles whose sides are mutually
prime to one another. To distinguish such triangles we shall denote them by:

a2 = b2 + c2. (3.1)

The squares of the odd numbers are:

1, 9, 25, 49, . . .

The remainders of these when divided by four are:

1, 1, 1, 1, . . .

The quantity a must be odd. If it was even its square a2 would be divisible by four and
the other two sides, being relatively prime to a would have to be odd, but the sum of the
squares of two odd numbers is never divisible by four:

1 + 1 ̸≡ 0 (mod 4).

We now assume that one of the other two sides is even. Without loss of generality we
assume that c is even. By rewriting the equation 3.1 as c2 = a2 − b2 we can factorise the
quantity on the right:

c2 = (a+ b)(a− b).

17
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Since a and b are odd, both the quantities a+ b and a− b are even. Any number dividing
both a+ b and a− b would divide both the sum and difference of the two expressions, that
is 2a and 2b, which is only 2 because gcd(a, b) = 1. Since (a+ b)(a− b) = c2 we may now
write:

a+ b = 2s2 (3.2)

a− b = 2t2. (3.3)

where gcd(s, t) = 1. This means either s or t is even, and because a > b that s > t. Hence:

c2 = 4(st)2. (3.4)

By summing and by taking the difference of the equations 3.2 and 3.3, and by taking
positive square roots of 3.4 we see that the a, b and c can rewritten:

a = s2 + t2

b = s2 − t2

c = 2st.

By choosing relatively prime numbers s and t we can generate the infinite set of rela-
tively prime sided right angled triangles.

For example, for s = 7 and t = 4 we have

a = 72 + 42

= 49 + 16

= 65

b = 72 − 42

= 49− 16

= 33

c = 2.7.4

= 56.

This resulting 65, 33, 56 triangle satisfies:

652 = 332 + 562.

Checking we see that 4225 = 1089 + 3136 .
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Fibonacci Numbers

4.1 Classically

The Fibonacci numbers form an infinite sequence starting with one and one and followed
by numbers which are equal to the sum of the two correspondingly preceding numbers in
that sequence:

1, 1, 2, 3, 5 . . .

We can represent these numbers mathematically with a pair of initial conditiond and
a recurrence relation:

fib1 = 1

fib2 = 1

(∀k)(k > 3) fibk = fibk−1 + fibk−2. (4.1)

4.2 Negatively

We notice that equation 4.1 can be be rewritten as:

(∀k > 3) fibk−2 = −fibk−1 + fibk.

This gives us an expression for a Fibonacci number in terms of it’s two successive
numbers. Thus we may go negatively and by relaxing the condition for k from being
greater than three to being any whole number, zero or negative number we may increase
the Fibonacci numbers to:

. . .− 3, 2,−1, 1, 0, 1, 1, 2, 3, 5 . . .

19
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4.3 Alternative Definition

We can deduce the whole negatively extended Fibonacci sequence from any consecutive
pair and the recurrence relationship. We can now define another sequence with different
initial values:

g0 = 1

g1 = 0

(∀k ∈ Z) gk = gk−1 + gk−2.

4.4 Addition

We may now add our alternative Fibonacci sequence in an interesting way:

k . . . 0 1 2 3 4 5 6 7 8 9 10 . . .
gk . . . 1 0 1 1 2 3 5 8 13 21 34 . . .
gk+1 . . . 0 1 1 2 3 5 8 13 21 34 55 . . . +
gk+2 . . . 1 1 2 3 5 8 13 21 34 55 89 . . . =

(4.2)

4.5 Reversing

To evaluate a particular Fibonacci number we can start with an initial pair and make
additions for the successive numbers in the sequence until we get to the one we require.
We could also ask what is our required Fibonacci number in terms of its preceding Fibonacci
number pair and for each of these what are they in terms of their preceding Fibonacci pairs
and so on until we get back to a particular pair? We start with:

gn = gn−1 + gn−2.

From the recurrence relationship we can replace gn−1 with gn−2 + gn−3:

gn = gn−2 + gn−3 + gn−2

= 2gn−2 + gn−3.

Using the recurrence relationship again, we replace gn−2 with gn−3 + gn−4:

gn = 2gn−3 + 2gn−4 + gn−3

= 3gn−3 + 2gn−4.

We replace gn−3 with gn−4 + gn−5:

gn = 3gn−4 + 3gn−5 + 2gn−4

= 5gn−3 + 3gn−4.

We may continue this process indefinitely. Note: the coefficients for each calculation of gn
are themselves a pair of Fibonacci numbers.
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4.6 Multiplication

In the foregoing section we saw that a Fibonacci number can be expressed as:

(∀n, i ∈ Z) gn = gi+1gn−i + gi+2gn−i−1.

A pair of Fibonacci numbers act as coefficients of an inner product. The pair of coeffi-
cients that map a pair to the first of that pair, the identity is the pair 1, 0 since:

gn = 1.gn + 0.gn+1.

The next pair 0, 1 has the effect of calculating the second Fibonacci number in a given
pair:

gn+1 = 0.gn + 1.gn+1.

The next pair 1, 1 has the effect of calculating the Fibonacci number from its preceding
pair:

gn+2 = 1.gn + 1.gn+1.

The next pair 1, 2 has the effect of calculating the Fibonacci number that is two after
the pair gn and gn+1:

gn+3 = 1.gn + 2.gn+1.

In general a pair of Fibonacci numbers act as coefficients with another pair to produce
another Fibonacci. Given a initial pair we can find the one that occurs say k steps after
the first if we know what the coefficient pair gk, gk+1 are.

Conveniently we may use a set of matrices defined as:

Mi =

(
gi gi+1

gi+1 gi+2

)
so that the identity is given by:

M0 =

(
1 0
0 1

)
and the matrix M1 is given by:

M1 =

(
0 1
1 1

)
and the matrices have the following properties

Mi = Mi−1 ⊕Mi−2

Mi+j = Mi ⊗Mj.
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For example, given that we know the Fibonacci pair g5, g6 is 3, 5 we can easily calculate
g11 as follows:

M5 =

(
3 5
5 3 + 5

)
M6 =

(
5 8
8 5 + 8

)
M11 = M5 ⊗M6

=

(
3 5
5 8

)
⊗
(

5 8
8 13

)
=

(
3× 5 + 5× 8 3× 8 + 5× 13
5× 5 + 8× 8 5× 8 + 8× 13

)
=

(
15 + 40 24 + 65
25 + 64 40 + 104

)
=

(
55 89
89 144

)
.

Hence g11 is the top left entry of the matrix M11 which is 55.

4.7 Exponentiation

In order to show how we may calculate large Fibonacci numbers we shall proceed by way
of an example. Suppose we wish to ascertain the value of g23 . Firstly, we convert the value
of our number, 23 , to binary:

23 = 1× 16 + 0× 8 + 1× 4 + 1× 2 + 1× 1 = 101112.

Next we calculate M23 by building up our binary string in the following way:

M1 =

(
0 1
1 1

)
M10 = M1+1 = M1 ⊗M1

M100 = M10+10 = M10 ⊗M10.

To get the value of M101 from M100 we can multiply by M1 , but in practice this is simply
means adding the entries of the matrix:

M101 =

(
g100 + g101 g101 + g110
g101 + g110 g110 + g111.

)
Thus we may continue:

M1010 = M101+101 = M101 ⊗M101

M1011 = M1010+1 = M1010 ⊗M1

M10110 = M1011+1011 = M1011 ⊗M1011

M10111 = M10110+1 = M10110 ⊗M1.
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We the simply extract the value of g10111 from the top–left corner of M10111. The
complete calculation is then:

M10 =

(
0 1
1 1

)
⊗
(

0 1
1 1

)
=

(
1 1
1 2

)
M100 =

(
1 1
1 2

)
⊗
(

1 1
1 2

)
=

(
2 3
3 5

)
M101 =

(
3 5
5 3 + 5

)
=

(
3 5
5 8

)
M1010 =

(
3 5
5 8

)
⊗
(

3 5
5 8

)
=

(
34 55
55 89

)
M1011 =

(
55 89
89 55 + 89

)
=

(
55 89
89 144

)
M10110 =

(
55 89
89 144

)
⊗
(

55 89
89 144

)
=

(
10946 17711
17711 28657

)
M10111 =

(
17711 28657
28657 17711 + 28657

)
=

(
17711 28657
28657 46368

)
The required value of g23 is 17711 .
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Quadratic Equations

5.1 Quadratic Equations

The general form of a quadratic in x is:

y = ax2 + bx+ c.

This can be represented on a x, y graph by a curve whose locus is in exact correspondence
with the equation. A quadratic’s curve is called a parabola. The values of a, b and c are
arbitrary constants. Thus an instance of the general form might be:

y = x2 − 3x+ 2. (5.1)

For every given value of x there corresponds a value for y.

5.2 Quadratic Roots

Quite often we are interested in finding the roots of an equation. For the quadratic this
means finding values of x for which the value of y is zero. Geometrically, this means
when the parabola crosses or touches the x–axis, with the exception of quadratic equations
whose roots are complex. The equation 5.1 has two roots at x = 2 and x = 1. In fact all
quadratics have two (maybe equal) roots. The equation for a quadratic at its roots is:

0 = (x− α)(x− β). (5.2)

We can the relate the coefficients a, b and c in the general equation in terms of α and
β:

α =
−b+

√
b2 − 4ac

2a

β =
−b−

√
b2 − 4ac

2a
.

24
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Equation 5.2 may be written as:

0 = x2 − (α + β)x+ αβ. (5.3)

Substituting the values of α and β we have:

0 = x2 − (
−b+

√
b2 − 4ac

2a
+

−b−
√
b2 − 4ac

2a
)x

+(
−b+

√
b2 − 4ac

2a
)(
−b−

√
b2 − 4ac

2a
)

= x2 − (
−2b

2a
)x+

b2 − (
√
b2 − 4ac)

2

4a2

= x2 − (
−b

a
)x+

b2 − (b2 − 4ac)

4a2

= x2 + (
b

a
)x+

4ac

4a2

= x2 + (
b

a
)x+

c

a
.

Multiplying through by a we have the general quadratic equation at its roots:

0 = ax2 + bx+ c.

5.3 Powers of Roots

In this section we shall only be concerned with one quadratic equation:

0 = x2 − x− 1.

This may be rewritten as:
x2 = x+ 1.

Multiplying both sides of the equation by xi we have:

xix2 = xix+ xi1.

This simplifies to:
xi+2 = xi+1 + xi.

That is to say the nth power of x is the sum of the two preceding powers of x. We can
use this to calculate powers of x :

x3 = x2 + x1

= x+ 1 + x

= 2x+ 1.
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Using this we can calculate:

x4 = x3 + x2

= 2x+ 1 + x+ 1

= 3x+ 2.

Using this we can calculate:

x5 = x4 + x3

= 3x+ 2 + 2x+ 1

= 5x+ 3.

We can continue this process indefinitely. Notice that the coefficients of x and x0 are
in a Fibonacci sequence. We now have a general expression for any power of x:

xn = gnx+ gn−1.

Where gn is defined as as:

g0 = 1

g1 = 0

(∀k ∈ Z) gk = gk−1 + gk−2.

5.4 Sums of Powers

We now define f as:
fn = αn + βn.

The sum of the powers raised to zero is the number of roots:

f0 = α0 + β0 = 2.

Recapping that:
y = x2 − (α + β)x+ αβ

we see that:

α + β = 1

αβ = −1.

Since they are roots,α and β satisfy this equation x2 − x− 1 = 0:

αn = gn+1α + gn

βn = gn+1β + gn.
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From our definition of fn we have:

fn = gn+1(α + β) + gn + gn

= gn+1 + 2gn

= gn + gn−1 + 2gn−1 + 2gn−2

= gn + 2gn−1 + gn−1 + 2gn−2

= fn−1 + fn−2.

Thus f may be defined as:

f0 = 2

f1 = 1

(∀k ∈ Z) fk = fk−1 + fk−2.

This is the same as the definition for gn , except it has different initial conditions. The
sequence is:

. . . , 2, 1, 3, 4, 7, 11, 18 . . . , fn = fn−2 + fn−1, . . .

We are now in a position to rapidly calculate any fn, the sums of the powers of the roots
of the equation y = x2 − x − 1 , by using the methods of addition, multiplication and
exponentiation introduced the previous chapter on Fibonacci Numbers and the matrix
sequence Mn : (

fn
fn+1

)
= Mn ⊗

(
2
1

)
.

Remember that:

Mi =

(
gi gi+1

gi+1 gi+2

)
.

So that:

fn = 2gn + gn+1

= gn + gn + gn+1

= gn + gn+2.

That is fn is equal to the sum of the diagonal elements of Mn , denoted as:

fn = Tr(Mn).
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Pascal’s Triangle

6.1 Pascal’s Triangle

The expansion of the powers of the binomial x+ y may be obtained as follows. Let z equal
the sum x+ y. We are now studying the equation:

zn = (x+ y)n =

n︷ ︸︸ ︷
(x+ y)(x+ y) . . . (x+ y) .

What we want to find is what is the equation when all the brackets have been removed.
That is what is it when all the bracketed factors have been multiplied out. We note that:

z0 = 1

z1 = x+ y.

We can equate the square of z with the binomial expansion of x+ y, by twice using the
distributive law of arithmetic:

z2 = (x+ y)(x+ y)

= x(x+ y) + y(x+ y)

= x2 + xy + yx+ y2.

We know from the commutative law that xy = yx. Rearranging the terms we see that:

z2 = x2 + 2xy + y2.

The third power can be calculated thus:

z3 = z2.z1

= (x2 + 2xy + y2)(x+ y)

= x3 + 2xyx+ y2x+ x2y + 2xyy + y2y.

28
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

↙↘↙↘↙↘↙↘↙↘↙↘↙↘↙↘↙↘↙↘↙↘↙↘↙↘↙↘

Figure 6.1: Pascal’s Triangle for the first thirteen rows

Rearranging the last part of the equation string reveals that:

z3 = x3 + 3x2y + 3xy2 + y3.

Any expansion can be easily calculated from the preceding expansion:

zn = zn−1.z1

= zn−1(x+ y).

By looking only at the coefficients of the terms in xiyj where i and j are integers, we
can form what is known as Pascal’s Triangle, whose rows are the coefficients of xiyj and i
and j are the diagonal coordinates of the coefficient.

6.2 Prime Rows

Ignoring the ones on the sides of the triangle, each row that corresponds to a prime number
has coefficients that are divisible by the prime. The non-end coefficients in rows that
correspond to composite numbers are not all divisible by that number. This is very difficult
to prove. Could this provide a test of primality ? We could check each coefficient to see if
it divisible by the number we wish to test for primality. Since the triangle is symmetric
about the middle coefficient for even numbers and the middle two for odd coefficients we
could reduce are work load. Unfortunately it takes considerable computation to generate
the coefficients and we would have to check about as many them as half the number we
wish to test for primality.
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Mersenne Numbers

To test a number for primality by trial division , that is by checking all possible divisors is
time-consuming. We check the remainders are not zero, starting with two and proceeding
up to the square root of the number to be tested. In the seventeenth century Father Marin
Mersenne claimed to have checked all the numbers mn which are of the form:

Mn = 2n − 1

for values of n up to 257. He did make a few errors, but it is interesting to note that in order
to test 261 − 1 by trial division would have required an enormous amount of computation
since he would have had to check the remainders of about a trillion divisions!

The exponent n itself must be prime since otherwise if it equalled a composite say pq
the the Mersenne Number could be factorised:

Mpq = 2pq − 1 = (2p − 1)(2p(q−1) + 2p(q−2) + . . .+ 2p + 1).

GIMPS stands for Great Internet Mersenne Prime Search . This is a systematic dis-
tributed search using thousands of computers around the world, over The Internet .
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n : mn ∈ P mn date who
2 3 unknown unknown
3 7 unknown unknown
5 31 unknown unknown
7 127 unknown unknown
13 8191 unknown unknown
17 131071 1588 Cataldi
19 524287 1588 Cataldi
31 1772 Euler
61 1883 Pervushin
89 1911 Powers
107 1914 Powers
127 1876 Lucas
521 1952 Raphael Robinson – SWAC

Figure 7.1: The first thirteen Mersenne Primes

n date who computer
607 1952 Raphael Robinson SWAC
1279 1952 Raphael Robinson SWAC
2203 1952 Raphael Robinson SWAC
2281 1952 Raphael Robinson SWAC
3217 1957 Hans Riesel BESK
4253 1961 Alexander Hurwitz IBM 7090
4423 1961 Alexander Hurwitz IBM 7090
9689 1963 Donald Gillies ILLIAC-II
9941 1963 Donald Gillies ILLIAC-II
11213 1963 Donald Gillies ILLIAC-II
19937 1971 Bryant Tuckerman IBM 360-91
21701 1978 Laura Nickel and Curt Noll CYBER 174
23209 1979 Curt Noll CYBER 174

Figure 7.2: The second thirteen Mersenne Primes
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n date who computer
44497 1979 David Slowinski CRAY-1
86243 1982 David Slowinski CRAY-1
110503 1988 Colquitt&Welsh
132049 1983 David Slowinski CRAY-XMP
216091 1985 David Slowinski CRAY-XMP
756839 1992 Slowinski&Gage CRAY-2
859433 1994 Slowinski&Gage
1257787 1996 Slowinski&Gage CRAY T94
1398269 1996 GIMPS, Armengaud
2976221 1997 GIMPS, Spence
3021377 1998 GIMPS, Clarkson
6972593 1999 GIMPS, Hajratwala
13466917 2001 GIMPS, Cameron

Figure 7.3: The third thirteen Mersenne Primes

n date who
20996011 2003 GIMPS, Shafer
24036583 2004 GIMPS, Findley
25964951 2005 GIMPS, Nowak
30402457 2005 GIMPS, Cooper,Boone
32582657 2006 GIMPS, Cooper,Boone
37156667 2008 GIMPS, Elvenich
42643801 2009 GIMPS, Strindmo
43112609 2008 GIMPS, Smith
57885161 2013 GIMPS, Cooper
74207281 2016 GIMPS, Cooper
77232917 2017 GIMPS, Pace
82589933 2018 GIMPS, Laroche

Figure 7.4: The final twelve known Mersenne Primes
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Pierre de Fermat

8.1 Fermat’s Little Theorem

Here we wish to show that any number multiplied by itself a prime number of times has a
remainder equal to the number when divided out by the prime number:

ap ≡ a (mod p).

In order to show this we use pure mathematical induction with the basis of a = 0.
Clearly:

0p ≡ 0 (mod p).

Next assume that what we wish to show is true up to a value of k:

kp ≡ k (mod p). (8.1)

We then perform the induction step on k:

(k + 1)p = kp +

(
p
1

)
kp−1 +

(
p
2

)
kp−2 + . . .+

(
p

p− 1.

)
k1 + k0.

Each of the binomial coefficients are divisible by p since by definition they are:(
p
i

)
=

p(p− 1)(p− 2) . . . 2.1

(i(i− 1)(i− 2) . . . 2.1)((p− i)(p− i− 1)(p− i− 2) . . . 2.1)
.

The numerator is clearly divisible by p and the denominator is not because p is prime
and the denominators factors are all less than p . Hence:

(k + 1)p ≡ kp + 1 (mod p).

Using the induction hypothesis, given by equation 8.1,shows us that:

(k + 1)p ≡ k + 1 (mod p).

33
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Thus we have shown that what we wish to prove is true for all values of k. Notice this is
a statement about prime exponents. For composite numbers we cannot complete the proof
because we cannot make the same statement about the binomial coefficient denominator.
For some values of a with composite n the statement an ≡ a (mod n) may be true but for
other values of a it is not.

8.2 Probable Prime

If we choose at random a number less than the one we want to test, is it likely to be equal
to itself when multiplied by itself a number of times equal to the number we wish to test?:

(test n ∈ N)(a ∈ Zn) an ≡ a (mod n)?

If the number we wish to test is prime then Fermat s Little Theorem shows us that all
such randomly chosen numbers will have the property:

(∀p ∈ P)(∀a ∈ Zp) ap ≡ a (mod p).

If on the other hand the number we wish to test is composite what is the chance of it
having the property? To improve our chances, we can repeat the test with other random
a.

8.3 Fermat Numbers

The definition for the nth Fermat Number is given by

Fn = 22
n

+ 1. (8.2)

Pierre de Fermat claimed that F4 was prime. To test it by trial division would require
some 256 long division calculations. Even with the probabilistic approach we can never be
absolutely sure until we have performed the test on a very large number of times in deed.
So how did he do it?

8.4 Fermat’s Last Theorem

Fermat’s Last Theorem is really a question: can we find natural numbers a, b, c, n such
that:

an = bn + cn?

For n = 1 we can solve the equation:

a = b+ c.
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Fn primality factorisation who
1 prime 5 unknown
2 prime 17 unknown
3 prime 257 unknown
4 prime 65537 Fermat
5 composite 641. Euler, 1732
6 composite 274117. Landry, 1880
7 composite Brillhart andMorrison 1971
8 composite Brent andPollard

9− 11 all composite all factored

Figure 8.1: Fermat Numbers for values up to eleven

There are infinitely many solutions. For n = 2 the equation reduce to Pythagoras’s
Theorem about right sided triangles with integer lengths.This also has infinitely many
solutions:

a2 = b2 + c2.

Next we shall consider the exponent and the trivial solutions for a, b, c of zero and one:

0n = 0n + 0n

1n = 1n + 0n.

These equations are true for all exponents.
We will not here settle Fermat’s Last Theorem for the non-trivial cases of a, b, c for

exponents greater than two. During history many great mathematicians have proved this
theorem for a finite number of exponents. Recently, Dr. Andrew Wiles completely solved
this famous conjecture by Fermat.
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Legendre, Jacobi and Kronecker

9.1 The Legendre Symbol

Consider the complete set, A, of non-zero congruences for an odd prime number p:

A = {1, 2, 3, . . . , p− 3, p− 2, p− 1}

and the set of its squares, denoted here by S:

S = {1, 4, 9, . . . , (p− 3)2, (p− 2)2, (p− 1)2}

and note that:

(p− 1)2 = p2 − 2p+ 12

≡ 1 (mod p)

and:

(p− 2)2 = p2 − 4p+ 22

≡ 4 (mod p)

and so on. In general

(p− a)2 = p2 − 2ap+ a2

≡ a2 (mod p).

so that S looks like:
A = {1, 4, 9, . . . , 9, 4, 1} (mod 11).

There are (n− 1)/2 (unique) members in total belonging to S and (n− 1)/2 remaining
that are not members of S.

For example, take p=11. Then:

A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

36
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and
S = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

and by taking modular reductions:

S ≡ {1, 4, 9, 5, 3, 3, 5, 9, 4, 1} (mod 11).

Removing repeats we have:

S ≡ {1, 4, 9, 5, 3} (mod 11).

The non–zero elements that belong to the set of squares are called quadratic residues
and those that do not belong to it are called quadratic non-residues. The quadratic residues
and non residues are represented by the Legendre Symbol. A quadratic residue, s, is denoted
by:

(s/n) = 1.

Otherwise if s is a quadratic non-residue it is written as:

(s/n) = −1.

9.2 The Jacobi Symbol

The Jacobi Symbol extends the Legendre Symbol to all odd numbers n not just the primes.
Fortunately for testing of primality, a Jacobi Symbol of −1 implies a non-square. A Jacobi
Symbol of 1 cannot indicate the number is definitely a square over n. The algorithm to
compute the symbol [5] is not much more than that of a gcd.

9.3 The Kronecker Symbol

The Kronecker Symbol is the same as the Jacobi Symbol but also includes even numbers
n.



Chapter 10

Euler’s Phi Function

How many times do we have to multiply a number by itself to be itself when it is considered
as the remainder of a division by some number?

ak? ≡ a (mod n)

That is, given any a and some n in the above equation, what is the value of k for which
the equation makes sense? If n is prime, say p, we use Fermat’s Little Theorem to see that
k is equal to p:

(∀a ∈ Z) ap ≡ a (mod p).

Apart from the value of one, what then is the value of k when n is composite?
The number of values that have a multiplicative inverse is given by the Euler Phi

Function. Assume that:
n = pi11 p

i2
2 . . . p

ij
j

where the individual pk are distinct and are as many as shown in their respective exponents.
We then list the n elements:

1, 2, 3, . . . , n.

For each distinct pk
ik we only loose values divisible by pk

1: If pk
ik divides any element

chosen from the list then pk
ik−1 divides that element and inductively pk also divides it.

Then the Euler Phi Function of n which is usually denoted by φ(n) is given as:

φ(n) = (p1 − 1)pi1−1
1 (p2 − 1)pi2−1

2 . . . (pj − 1)p
ij−1
j .

The Euler Phi Function is useful since for all a such that gcd(a, n) = 1

aφ(n) ≡ 1 (mod n).

Although the the proof of this is a little daunting it can be best illustrated by an example.
Suppose that n = 15. Its proper prime factors are 31 and 51. That is

15 = 3× 5.
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We discount the numbers in the list that are divisible by three or five:

1, 2, ̸ 3, 4, ̸ 5, ̸ 6, 7, 8, ̸ 9, ̸ 10, 11, ̸ 12, 13, 14, ̸ 15.

This leaves eight elements of the list. Alternatively by calculation of the Euler Phi
Function:

φ(n) = (3− 1)30(5− 1)50 = 2.4 = 8.

Trivially:
1 ≡ 1 (mod n).

Now we check a number relatively prime to fifteen, for example two:

28 ≡ 256 ≡ 15× 17 + 1 ≡ 1 (mod 15).

In general for values of a that are relatively prime to n form a group known as the
multiplicative group. The number of elements of the group is given by the Euler Phi
Function. Group theorist have proven that each element’s order divides the size of the
group.



Chapter 11

Lucas Sequences

Classically the Lucas sequence [7] is defined as:

V0 = 2

V1 = 1

Vn = Vn−1 + Vn−2

which generates
< 2, 1, 3, 4, 7, 11, 18, . . . > .

In the same way the Fibonacci sequence is defined by:

f0 = 1

f1 = 1

fn = fn−1 + fn−2

generating
< 1, 1, 2, 3, 5, 8, 13, . . . > .

We can represent these sequences by matrices:

M0 =

(
1 0
0 1

)
M1 =

(
1 1
1 0

)
Mn = Mn−1 +Mn−2.

noting that the traces give the Lucas sequence and the top left elements give the Fibonacci
sequence.

Generalising the Lucas sequence with integer parameters, P and Q, we define:

V0 = 2

V1 = P

Vn = PVn−1 −QVn−2
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and the corresponding matrix element sequence as:

U0 = 1

U1 = P

Un = PUn−1 −QUn−2.

We represent the by matrices as:

M0 =

(
1 0
0 1

)
M1 =

(
P −Q
1 0

)
Mn = PMn−1 +QMn−2

noting that
Mn = Mn

and that
Ma+b = MaMb.

The characteristic equation is:

M2 = PM −Q

or
M2 − PM +Q = 0.

Although the matrix representation can help with mathematical manipulation of Lucas
sequences, in practice there are much quicker ways to compute them.

Consider the case when Q = −1 with the Lucas V-sequence being:

V0 = 2

V1 = P

Vn = PVn−1 − Vn−2.

Here is a very fast algorithm to compute the nth pair of V (P,−1, n) modulo n with the
Jacobi Symbol J(P 2 − 4, n) = −1 for a Lucas PRP test:

Assign u=2 and v=P

Loop over the bits of n, high to low:

If the current bit is 1 then:

Assign u=u*v-P mod n

Assign v=v*v-2 mod n

Else (if the current bit is 0):

Assign v=u*v-P mod n

Assign u=u*u-2 mod n

Finally check that u=P and v=2.



Chapter 12

Frobenius and Gaussian Primes

12.1 Frobenius

A Frobenius test is taken modulo n and modulo a polynomial equation in one variable.
Note that we have effectively two zeroes. For an example of such a polynomial take
x2 − 3x + 1 = 0. We can calculate say powers of bases by reducing (mod x2 − 3x + 1),
where we can recursively or otherwise reduce x2 to 3x−1, and then reducing the remaining
coefficients by modulo n. These two modular reductions are written as (mod n, x2−3x+1).

12.2 Gaussian Primes

Consider the the polynomial x2 + 1. We see for integers a and b that ax+ b (mod x2 + 1)
form the Gaussian integers. The expression −ax+ b is called the conjugate of ax+ b.

Gaussian integers can be prime in their own way. For example 2x + 1 and x + 1 are
neither ±1 nor ±x (the units) and their product:

(2x+ 1)(x+ 1) ≡ 2x2 + 3x+ 1 ≡ 3x− 1 (mod x2 + 1)

is by definition composite.
A Gaussian prime ax + b (mod x2 + 1) occurs when the norm |ab + c2| is a prime

integer. For example 3x− 1 (mod x2+1) is not a Gaussian prime because it has the norm
32 + 1 = 10 which is not a prime integer. Another example: 2x + 1 (mod x2 + 1) is a
Gaussian prime because its norm 22 + 1 = 5 is a prime integer.

The set of associates of ax + b results from multiplication by {±1,±x}. For example
the associates of 2x+ 1 are in {2x+ 1,−2x− 1, x+ 2,−x− 2}.

So any number that can be written as a product of {±1,±x} and an integer prime of
the form 4k+1, which Fermat showed can be written uniquely as a2+b2, forms a Gaussian
prime. For example the integer prime 101 = 4.25 + 1 can be written uniquely as 102 + 1.
Consequently 10x + 1 is a Gaussian prime as are its associates and the conjugates of all
four of them.
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Chapter 13

Perrin Sequence

13.1 Perrin Sequence

Consider the sequence fn :

. . . , 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, . . . fn = fn−2 + fn−3, . . .

If n is prime then: fn ≡ 0 (mod n) since: α+β+ γ ≡ αn+βn+ γn (mod n). However the
converse is not true. The value 271441 = 5212 is the first pseudoprime in this sequence:

α + β + γ ≡ α271441 + β271441 + γ271441 (mod 271441).

The idea can be extended to the sequence for the general equation y = xm − xr − 1. If
n is prime then:

j=m∑
j=1

αj ≡
j=m∑
j=1

αn
j (mod n).

However there always seems to be composite n for which this condition also holds. This
does not, then, provide us with a hard and fast test for primality.

13.2 Characteristic Function

Consider the function: F : F (a, b, r) = am − ar − 1. We know by Fermat’s Little Theorem
that if F is prime: aF ≡ a (mod F ).

To date the author has done much testing and has not found a case for which the above
equation holds for a composite F , with the exception of F (2,m,m− 1) = 2m−1 − 1 .

If F is prime, the condition is passed on to the sums of the powers of the roots : for all
k :

(∀k ∈ Z)
j=m∑
j=1

αk
j ≡

j=m∑
j=1

αkF
j . (mod F )

In fact, all symmetric functions in αi are equivalent to them in αi
F modulo F .
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Chapter 14

Carmichael Numbers

We saw that Fermat’s little Theorem can be used to do a probabilistic test for primality.
If a number fails Fermat’s little Theorem test it is definitely composite. We cannot say it
is definitely prime if it does pass. Furthermore there are some numbers that pass whatever
base is chosen. These numbers are known as Carmichael Numbers. The first is 561:

(∀a ∈ Z) a561 ≡ a (mod 561).

We have to use something else to test such numbers. This could be strengthening
Fermat’s little theorem by taking successive square roots of 1 which are known to be ±1
for primes. Or we can use Lucas Sequences or higher order fields (which can also be
strengthened).
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Chapter 15

RSA Cipher

15.1 RSA Algorithm

No one has found a quick method for factorising very large composite numbers. In 1978
Rivest, Shamir and Aldeman published their work on a cipher that takes very good ad-
vantage of this.

Encode : E(x) ≡ xs (mod p.q)

Decode : D(x) ≡ xt (mod p.q)

where p, q ∈ P and s.t ≡ 1 (mod (p− 1)(q − 1)).

The sender of the message does not know the decoding key. In fact only the receiver
does. An intercepted encrypted message can not be decoded without the required decoding
key. The values of p and q are chosen to be big because factorising them is prohibitively
time consuming. A would be attacker cannot compromise the cipher without knowing
what φ(pq) is.

We need to show that D(E(x)) = x in order to prove that algorithm works:

D(E(x)) ≡ (xs)t (mod n)

≡ xst (mod n).

We choose s such that it is relatively prime to (p−1)(q−1). This means that gcd(s, (p−
1)(q − 1)) = 1. We then know there exists numbers t and k such that:

st+ (p− 1)(q − 1)k = 1.

Hence:

xst+(p−1)(q−1)k = x1.
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The order of multiplying x by itself is given by Euler’s Phi Function as:

φ(pq) = (p− 1)(q − 1).

Hence:
xst ≡ x (mod pq)

and so:
D(E(x)) = x.

To construct the code:

• obtain two large distinct primes p and q.

• choose s: s ∧ (p− 1)(q − 1) = 1.

• using Euclid’s algorithm calculate t: st ≡ 1 (mod (p− 1)(q − 1)).

We can choose s to be small for quick encoding. Or choose t to be small and compute
s via the extended euclidian algorithm so that decoding is quick.

15.2 RSA over x2 − ax + 1

• Find a such that the Jacobi Symbols J(a2 − 4, p) = −1 and J(a2 − 4, q) = −1 where
p and q are two distinct large primes and let n = pq.

• Choose s such that s ∧ (p2 − 1)(q2 − 1) = 1.

• Use Euclid’s extended algorithm to compute t ≡ s−1 over (p2 − 1)(q2 − 1).

• Then we can encode u and v with E(ux+v) as Ux+V ≡ (ux+v)s (mod n, x2−ax+1).

• Decode with D(Ux+ V ) as ux+ v ≡ (Ux+ V )t (mod n, x2 − ax+ 1).

Note that D(E(ux+ v)) ≡ (ux+ v)st ≡ ux+ v (mod n, x2 − ax+ 1).



Chapter 16

The Selfridge Unit of Measure

When calculating exponents of a number, for example for a little Fermat test, a matrix or
a Lucas sequence, we perform mostly additions, multiplications and modular reductions.
Multiplication operations are much more time-consuming than addition ones, and modulo
operations are the most time-consuming as they involve division.

There are some techniques to reduce multiplication time such as Karatsuba’s Method
and fast Fourier transforms. The times for these are of the order of:

school boy n2

Karatsuba n1.58

FFT n.log(n)log(log(n))

In practice small numbers are best calculated not by FFT. There is a optimal length at
which FFT should be used. A lot depends on the architecture of the computer being used.
Thus for an arbitrary number size we have to choose which number is optimal. Hence the
function for the timing of modular exponentiation with its additions, multiplications and
modular reductions is affected by the methods used, be they school boy, Karatsuba, or
FFT.

The time taken to do one Fermat test an (mod n) is called a selfridge [2]. Note that
the time to do a strong Fermat test is almost the same.

The Lucas modular n-exponentiation for (P,−1, n) can be done in 2 selfridges. The
devil is in the detail: It is important to analize the exponentiating algorithm to reduce
the overall operations. Computers have different circuits for addition than multiplication,
on some being performed simultaneously, and it is the art of the programmer to maximise
throughput.

47



Chapter 17

Trinomial Recurrence

17.1 A Cubic Recurrence

Here we consider the equation:
0 = x3 − x− 1.

This can rewrite this as:
x3 = x+ 1.

We may now compute any power of x greater than 3 by multiplying both sides by xn−3 :

xn = xn−2 + xn−3. (17.1)

We can use this for any value of n ∈ Z .
Obviously the following holds:

x0 = 1

x1 = x

x2 = x2.

Using the relation 17.1 we can compute x4 as:

x4 = x2 + x.

Using the relation 17.1 repeatedly, we can compute x5 as:

x5 = x3 + x2

= (x+ 1) + x2

= x2 + x+ 1.

Notice that, whatever power of x we wish to compute, we can reduce it to a quadratic
of the form Ax2 +Bx+ C for some A,B and C.

We now build a table of the powers of x:
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x0 x1 x2 x3 x4 x5

1 1 0 0 1 0 1
x 0 1 0 1 1 1
x2 0 0 1 0 1 1

We can easily compute the next column, for x6 . Since we know that x6 = x4 + x3 , we
simply add the corresponding values row-wise. The table for the first ten values are:

. . . x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . . .
1 . . . 1 0 0 1 0 1 1 1 2 2 . . .
x . . . 0 1 0 1 1 1 2 2 3 4 . . .
x2 . . . 0 0 1 0 1 1 1 2 2 3 . . .

Now consider the values under xi , xi+1 and xi+2 as the matrix Mi. Thus:

M1 =

 0 0 1
1 0 1
0 1 0

 .

Squaring this we see:

(M1)
2 =

 0 0 1
1 0 1
0 1 0

 0 0 1
1 0 1
0 1 0


=

 0 1 0
0 1 1
0 0 1


= M2.

Next consider the calculation:

M3 ⊗M4 =

 1 0 1
1 1 1
0 1 1

 0 1 1
1 1 2
0 1 1


=

 1 2 2
2 3 4
2 2 3


= M7.

In general we have:
Mi ⊗Mj = Mi+j.

From the recurrence relationship, we also have:

Mk = Mk−2 +Mk−3.
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17.2 Roots

Let α, β and γ be the roots of the cubic equation y = x3 − x− 1 :

(x− α)(x− β)(x− γ) = 0.

Multiplying out we get:

x3 − (α + β + γ)x2 + (αβ + βγ + γα)x− αβγ = 0.

We can now equate the coefficients with x3 − x− 1 = 0 :

α + β + γ = 0

αβ + βγ + γα = −1

αβγ = 1.

The right hand side of these equations are called the elementary symmetric functions.
From this we can deduce:

0 = (α + β + γ)2

= α2 + β2 + γ2 + 2(αβ + βγ + γα)

= α2 + β2 + γ2 + 2(−1)

= α2 + β2 + γ2 − 2.

We can rewrite this as:
α2 + β2 + γ2 = 2.

Since α , β and γ are all non-zero:

α0 + β0 + γ0 = 3.

Since α , β and γ satisfy the equation x3 = x+ 1 we deduce that for all n ∈ Z :

αn = αn−2 + αn−3

βn = βn−2 + βn−3

γn = γn−2 + γn−3.

Summing these:

αn + βn + γn = αn−2 + βn−2 + γn−2 + αn−3 + βn−3 + γn−3.

We can use this to compute:

α3 + β3 + γ3 = α1 + β1 + γ1 + α0 + β0 + γ0

= 0 + 3

= 3.
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Thus we can compute any sum of the powers of the roots:

α0 + β0 + γ0 = 3

α1 + β1 + γ1 = 0

α2 + β2 + γ2 = 2

α3 + β3 + γ3 = 3

α4 + β4 + γ4 = 2

α5 + β5 + γ5 = 5

α6 + β6 + γ6 = 5
... =

...

Let fn represent the sum of the nth powers of the roots:

fn = αn + βn + γn.

The sequence for fi is:

. . . 3, 0, 2, 3, 2, 5, 5, 7, 10 . . . (fk−3 + fk−2 = fk) . . .

It’s recurrence relationship can be defined by:

f0 = 3

f1 = 0

f2 = 2

(∀k ∈ Z) fk = fk−2 + fk−3.

We now return to the table, this time summing the diagonals in a south easterly sense:

. . . x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . . .
1 . . . 1 0 0 1 0 1 1 1 2 2 . . .
x . . . 0 1 0 1 1 1 2 2 3 4 . . .
x2 . . . 0 0 1 0 1 1 1 2 2 3 . . .

↘ 3 0 2 3 2 5 5 . . .

This shows that the sum of the diagonal elements, called the trace, of Mn is equal to
the sum of the nth powers of the roots of the equation y = x3 − x− 1:

Tr(Mn) = fn.

17.3 Periodicity

The sum of the powers of the roots of the equation: y = a3−a−1,f(n), must have a finite
period over a prime field. We call this period τ(f, p). Notice that, . . . , 0, 0, 0, . . . never
occurs because this would result in a sequence of zeroes. This leaves p6−1 possible triplets
in the sequence. The period divides this:

τ(f, p) | p6 − 1.
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17.4 General Trinomial

In the chapter on the Cubic Equation we considered the equation 0 = x3 − x− 1. In this
chapter we consider the equation:

0 = xm − xr − 1.

We transfer the ideas and summarise some of the ideas introduced in the Cubic Equation
chapter. M0 is the m by m identity matrix:

M0 = Im.

The companion matrix M1 is the m by m matrix:

M1 =



0 0 0 . . . 0 0 1
1 0 0 . . . 0 0 0

0 1 0 . . . 0 0
...

. . . . . . . . . . . . . . . . . . 1

0 0 0 . . . 0 0
...

0 0 0 . . . 1 0
...

0 0 0 . . . 0 1
...


The bottom left m− 1 by m− 1 elements is equal to the matrix Im−1 . The “floating”

1 on the right hand column is in the (r + 1)th row.

We state here without much explanation that:

Mi+j = Mi ⊗Mj.

The matrices also satisfy for all k the recurrence:

Mm+k = Mr+k +M1+k.

Also the sum of the diagonal elements of the matrix Mk is equal to the sum of the kth

powers of the roots of the equation y = xm − xr − 1 :

Tr(Mk) =

j=m∑
j=1

αk
j .

For example, we may now easily answer the following question: what is the sum of the
7th powers of the roots of the equation y = x5 − x2 − 1 ?

To answer this compute the following table:
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . . .
1 1 0 0 0 0 1 . . .
x 1 0 0 0 0 1 . . .
x2 1 0 0 1 0 1 . . .
x3 1 0 0 1 0 1 . . .
x4 1 0 0 1 0 1 . . .

↘ 5 0 0 3 0 5 3 0 . . .

Thus
j=5∑
j=1

α7
j = 0.

17.5 Reducibility

Not all the expression of the form xm − xr − 1 are irreducible. For example:

x5 − x4 − 1 = (x3 − x− 1)(x2 − x+ 1),

Therefore x5 − x4 − 1 can never be prime.



Chapter 18

The Monster and its Children

18.1 The Monster

Consider the function:
F = ar

∏
i∈N

(ari − 1)ti − 1.

Examining the left hand side, the product:

ar
∏
i∈N

(ari − 1)ti ,

we see that it is equal to 0 when a = 0 or when a ari − 1 = 0. In the latter case a is a root
of unity determined by the ri. Note that ti is the multiplicity of the various ari − 1.

When F is irreducible and not a2 − a− 1 it is conjectured that the value is prime if

aF ≡ a (mod F ).

18.2 The Fermatian Child

Consider the simpler expression:

F = aA(a− 1)B(a+ 1)C − 1.

It is conjectured that for distinct x, y and z that the Fermat-like trinomial

Axn +Byn + Czn = 0.

has no non-trivial integer solutions for

n ≥ |A|+ |B|+ |C|.

Note that with arrangement this simpler F is a child:

54



18.3. THE QUADRATIC CHILD 55

F = aA(a2 − 1)C(a− 1)B−C − 1.

For example consider
F = a2(a− 1)3(a+ 1)5 − 1.

Then it is conjectured that

2xn + 3yn + 5zn = 0.

has no non-trivial integer solutions for

n ≥ |2|+ |3|+ |5|
n ≥ 10.

18.3 The Quadratic Child

Now for our F let r = 0, i = 1, s1 = 2 and t1 = 1 such that:

F = a2 − 2.

Odd F of this form would be conjecturally prime if

a2(F−1) ≡ 2F−1 (mod F ).

We may strengthen this to

aF−1 ≡ 2
F−1
2 (mod F )

and by Fermat’s little Theorem it would be sufficient to test

2
F−1
2 ≡ 1 (mod F ).

This 1-selfridge test is very fast for a computer to perform, but note that it has zero
density in the natural numbers.



Chapter 19

Quadratic PRP Tests

19.1 Introduction

There are algorithms, such as ECPP (elliptic curve primality proving), that test numbers
fully for their primality, leaving no doubt. However, sometimes speed is important. There
are quicker tests which have a very small chance of failure. That is the test may mis-
identify a composite number as a prime. An attack on some crypto systems is possible if
an attacker presents a composite number knowing the receiving primality testing algorithm
will be fooled into thinking the number is prime.

An arbitrary number found by quick methods is called a probable prime (PRP). A
composite number that is mis-identified as a prime is called a pseudoprime.

Trial division by primes to the square root of a 150 digit number to show itself is
prime is infeasible. So we must use other methods such as those based on Fermat’s “little
theorem”, or Lucas Sequences etc.

There are counterexamples to Lucas Sequence tests too. Despite strengthening these
tests, as John Selfridge et al have done, counterexamples are known. Even with repeated
random applications with different parameters some counterexamples are known.

A Fermat Little Theorem test is said to take 1 selfridge [2]: log2 multiplications and
modular reductions are done over the number being tested. The quickest general Lucas
Sequence tests take 2 selfridges.

The Baillie-PSW composite test [1] combines a Little Fermat test with a Lucas Sequence
test, but has no known counterexamples. It is 1 + 3 selfridges. Jon Grantham’s Random
Quadratic Frobenius Test [3] is 3 selfridges.

19.2 A Quadratic Test

Consider the matrix

M =

(
a −1
1 0

)
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whose characteristic equation is
x2 − ax+ 1 = 0

and let
M∗ = M −X

where

X =

(
a 0
0 a

)
or written in full: (

0 −1
1 −a

)
=

(
a −1
1 0

)
−
(

a 0
0 a

)
.

Note the symmetry between M∗ and M causing them to be computationally the same.
For example:

M2 =

(
a −1
1 0

)2

=

(
a2 − 1 −a

a −1

)
M∗2 =

(
0 −1
1 −a

)2

=

(
−1 a
−a a2 − 1

)
.

Let’s now take the nth power in the style of a Little Fermat test of M∗:

M∗n = (M −X)n

noting that the matrix X commutes with M under multiplication, so that for odd n:

M∗n = Mn + Σi=n−1
i=1

(
n
i

)
(−X)iMn−i −Xn.

If we assume n to be an odd prime then the indicated binomial coefficients are all 0
modulo n: (

n
i

)
≡ 0 (mod n).

Thus by assuming n is an odd prime we have:

M∗n ≡ Mn −Xn (mod n).

Since M∗ and M are computationally the same we need only compute

Mn (mod n)

Xn (mod n)
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and check the difference is
M∗n (mod n).

Calculating the traces of Mn and Mn+1 is much quicker than matrix multiplication.
With a strong Jacobi Symbol for the discriminant of the characteristic equation

J(a2 − 4, n) = −1

the stronger equation happens due to the Frobenius endomorphism:

Mn ≡ I

M
(mod n)

where
I

M
=

(
0 1
−1 a

)
.

Looking at the traces we see that the equivalent Lucas-V sequences with the strong
Jacobi Symbol are

Vn = a

Vn+1 = 2.

Thus the test for a chosen x is very quick:

J(a2 − 4, n) = −1

an−1 ≡ 1 (mod n)

xn+1 ≡ 1 (mod n, x2 − ax+ 1).

Unfortunately, there are plenty of pseudoprimes for this test. However, we can strengthen
the test in a number of ways. Firstly, we can use a minimal parameter a, as the Baillie-PSW
test does; and, secondly, we can repeat the test on n with different parameters. Thirdly,
we can strengthen the Little Fermat test by letting n − 1 = d · 2s where d is odd. Then
either:

ad ≡ 1 (mod n)

or
a2

r·d ≡ −1 (mod n)

for some r such that 0 ≤ r < s.
Fourthly, in a similar way, we can strengthen the Lucas Sequence test as follows. Let

n+ 1 = e · 2f where e is odd, Then either:

V (2, a, < e− 1, e >) ≡< a, 2 > (mod n)

or
V (2, a, < 2g · e− 1, 2g · e >) ≡< −a,−2 > (mod n)

for some g such that 0 ≤ g < f .
These strengthening conditions of the Little Fermat tests and the Lucas Sequence tests

are easily calculated with left-to-right binary exponentiation.
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19.3 A Double Quadratic Test

Define the two matrices M and N as follows:

M =

(
a− 2 −1
1 0

)
N =

(
a+ 2 −1
1 0

)
with

X =

(
a− 2 0
0 a− 2

)
Y =

(
a+ 2 0
0 a+ 2

)
.

Consider the following equations

M∗ = M −X

N∗ = N − Y

written out in full as(
0 −1
1 −a+ 2

)
=

(
a− 2 −1
1 0

)
−
(

a− 2 0
0 a− 2

)
(

0 −1
1 −a− 2

)
=

(
a+ 2 −1
1 0

)
−
(

a+ 2 0
0 a+ 2

)
.

The idea is to compute for a suspected prime n

M∗n ≡ Mn −Xn (mod n)

N∗n ≡ Nn − Y n (mod n)

where the Jacobi Symbols for the quadratic characteristic equations

x2 − (a− 2)x+ 1 = 0

y2 − (a+ 2)y + 1 = 0

are strong:

J((a− 2)2 − 4, n) = −1

J((a+ 2)2 − 4, n) = −1

and computing and checking

(a− 2)n−1 ≡ 1 (mod n)

(a+ 2)n−1 ≡ 1 (mod n)

xn+1 ≡ 1 (mod n, x2 − (a− 2)x+ 1)

yn+1 ≡ 1 (mod n, y2 − (a+ 2)y + 1).
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The matrix exponents can be quickly calculated using Lucas sequences

M : < Vn, Vn+1 >≡< a− 2, 2 > (mod n)

N : < Vn, Vn+1 >≡< a+ 2, 2 > (mod n).

In order to find suitable x and y we require that n is non-square and

gcd(30, n) = 1

Note that when strengthening the Lucas Sequence tests the following is conjectured to
be true:

M
n+1
2 ≡ ±I (mod n)

N
n+1
2 ≡ ∓I (mod n).

respectively.
It is observed that

Tr

(
3 −1
1 0

)2·n

= Tr

(
7 −1
1 0

)n

for all n. Hence the test with parameter pair {3, 7}, i.e. when the Jacobi Symbol J(5, n) =
−1, requires two Little Fermat tests and only one Lucas Sequence test. Therefore, for this
limited parameter pair: (

3 −1
1 0

)n+1
2

≡ −1 (mod n)

for prime n.

19.4 Second Double Quadratic Test

Rather than using the pair of characteristic equations of matrices to test the probable
primality of a number n

x2 − (a− 2)x+ 1 = 0

y2 − (a+ 2)y + 1 = 0

with strong discriminants, i.e. for which the Jacobi Symbols are −1, we could instead use:

x2 − (a− 1)x+ 1 = 0

y2 − (a+ 1)y + 1 = 0

with strong Jacobi Symbols for the discriminants

J((a− 1)2 − 4, n) = −1

J((a+ 1)2 − 4, n) = −1
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and check that

x2n − (a− 1)nxn + 1n ≡ 0 (mod n)

y2n − (a+ 1)nyn + 1n ≡ 0 (mod n)

simply be computing

(a− 1)n−1 ≡ 1 (mod n)

(a+ 1)n−1 ≡ 1 (mod n)

xn+1 ≡ 1 (mod n, x2 − (a− 1)x+ 1)

yn+1 ≡ 1 (mod n, y2 − (a+ 1)y + 1).

Computing the Lucas V sequences, the traces of the matrices, is quicker.
A boundary condition is that gcd(a, n) = 1 because if not then for some common

divisor, d, we would trivially have:

M2 +M + 1 ≡ 0 (mod d)

N2 −N + 1 ≡ 0 (mod d).

which make the equations cyclotomic over the divisor.
Also, to find a suitable pair, a−1 and a+1, we further require that n is non-square and

gcd(210a, n) = 1. The requirement that gcd(7, n) = 1 is a practical one because searching
for a strong Jacobi pair of parameters is fruitless for n = 7 · r2.

No counterexamples to this test have been found.

19.5 A Two Selfridge Test

When computing intermediate values sx + t of left to right binary exponentiation over
x2 − ax+ 1 = 0 it is notable that:

(sx+ t)2 ≡ s2x2 + 2stx+ t2 ≡ s(sa+ 2t)x+ t2 − s2 (mod x2 − ax+ 1).

Since a will be small the calculation of the coefficient of x is dominated by one major
multiplication and modular reduction. Note that the term t2− s2 can be expressed by (t−
s)(t+s) which is also dominated by one major multiplication and a modular reduction. This
means that exponentiation is dominated by two major multiplications and two modular
reductions per step.

This test is suggested for non-square odd n using minimal a ≥ 0 such that J(a2−4, n) =
−1:

(x+ 2)n+1 ≡ 2a+ 5 (mod n, x2 − ax+ 1).

This has been verified for minimal a for n < 250 [4].
The runtime may be be improved for a > 2 by using base x+1 instead of base x+2.



Chapter 20

Restricted Domain PRP Tests

20.1 Introduction

There have been many publications regarding probable prime tests over the last forty years
or so since the seminal paper of Baillie, Pomerance, Selfridge and Wagstaff (BPSW) [1].
The basic idea of BPSW is to perform a strong base 2 Fermat probable prime test in
conjunction with an Lucas probable prime test with carefully chosen parameters.

The BPSW test is very fast and reliable; It is 1 + 3 Selfridges, where a Selfridge is the
time taken to do a Fermat probable prime test, and to date nobody has yet claimed the
$30 offered for a counterexample or a proof that none exist. In contrast, Elliptic Curve
Primality Proving (ECPP) is of the order O(log(n)4+ϵ) for some ϵ > 0.

For the Lucas component of the BPSW test, parameters are chosen from Z by one of
two methods, one given by Selfridge and the other by Pomerance in their paper. In this
chapter the domain of a parameter is restricted to 2r or 3r for some integer r. Then r itself
is restricted after the full Lucas probable prime test is transformed into a computationally
efficient Euler probable prime test plus a simple Lucas probable prime chain test. The
resulting restricted domain test is 1 + 2 Selfridges and a brief look is taken to see how a
“fused” probable prime test can be performed in 2 Selfridges.

A practical algorithm is given and some statistical results are also presented.

20.2 Definitions

A Fermat probable prime (PRP) is an n for which an ≡ a mod n for some a. It is called
a-PRP. If gcd(a, n) = 1 it can be divided by a:

an−1 ≡ 1 (mod n).

There are Fermat pseudoprimes (PSP) to the PRP test such as 341 which is 2-PSP.
There are also Carmichael (absolute pseudoprime) numbers for which an = a mod n for
all bases a; For example 561.

62
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An Euler probable prime (EPRP) is one for which a
n−1
2 ≡ J(a, n) mod n, where J(a, n)

is the Jacobi symbol of a over n.

A strong Fermat probable prime (SPRP) is calculated as follows. Let n = 2sd+1 where
d is odd. Compute ad mod n. If it is ±1 declare n do be a-SPRP. Square up to s− 1 times
checking for equivalence to −1. If so declare n to be a-SPRP.

A (proper) Lucas probable prime (LPRP) is test of odd n over the quotient ring
Zn[x]/(x

2 − Px + Q) with a strong Jacobi symbol of the discriminant P 2 − 4Q over n,
i.e. equal to −1 so that the square root of the discriminant has no solution in Zn which
ensures the Frobenius automorphism forms the augmented solutions for x:

x =
P ±

√
P 2 − 4Q

2
.

An LPRP is calculated thusly: xn+1 ≡ Q (mod n, x2 − Px + Q) such that x2 = Px − Q
is repeatedly used to calculate powers of x, usually by a left-right binary exponentiation
method. The general LPRP(n, P , Q) test has many pseudoprimes, for example LPRP(51,
17, 25). The Q value could be restricted to 2 and then test LPRP(n, P , 2), but again there
are many pseudoprimes which can be found easily, for example LPRP(1387, 511, 2).

An LPRP(n, P , 1) test can be very efficiently calculated by a Lucas binary exponenti-
ation chain and is denoted in this paper as an LPRP chain.

Define a strong Lucas probable prime chain (SLPRP chain) test as follows. Let n =
2te − 1 where e is odd. Calculate the chain up to the power of e. If it is ±1 declare n to
be SLPRP chain. Square the chain up to t − 1 times further checking for a result of −1
and if this is the case declare n to be SLPRP chain.

20.3 Domain Restriction

The domain of an LPRP test has its P restricted to 2r for integer r and Q to 2. Thus
x2 − 2rx + 2 = 0 where the Jacobi symbol of the discriminant 4r − 8 over n is the strong
value of −1. The rationale is that a smaller domain will produce fewer pseudoprimes.
Given that the multiplicative order of 2 over Zn is much smaller then the domain of freely
varying P across Zn, this seems a good way to greatly reduce the number of pseudoprimes.
With the aid of a few choice GCDs, shown in the next section, finding a pseudoprime is
very difficult. In a later section r itself is restricted, further diminishing the domain 2r.

20.4 Transformation

The LPRP(n, 2r, 2) test is strengthened into a 2-EPRP test of n and a test for z
n+1
2 equal

to the Jacobi symbol of 2 over n working modulo n and z2 − (4
r

2
− 2)z + 1. That is a

2-EPRP and an LPRP chain test. This can shown with x2 − Px + Q companion matrix
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calculations:(
P −Q
1 0

)n+1

=

(
P 2 −Q −PQ

P −Q

)n+1
2

=

(
P 2

Q
− 1 −P
P
Q

−1

)n+1
2 (

Q 0
0 Q

)n+1
2

.

The characteristic equation of the left hand matrix of the product (the determinant of
which is 1) is z2 − (P

2

Q
− 2)z + 1 = 0.

The right hand matrix of the product raised to power of n+1
2

is equivalent J(Q,n)Q

mod n and dividing by Q which is assumed to be invertible mod n then Q
n−1
2 ≡ J(Q,n)

mod n. Consequently working over Zn[z]/(z
2 − (P

2

Q
− 2)z + 1) that z

n+1
2 should also be

equivalent to J(Q,n).
With the substitution of 2r for P and 2 for Q, note that if either gcd(4r − 2, n) or

gcd(4r− 4, n) is not 1 then over some factor of n the quadratic polynomial z2− (4
r

2
− 2)z+

1 would be cyclotomic, making it easier to find pseudoprimes. Also note that trivially
gcd(2r, n) = 1 for odd n.

20.5 Further Domain Restriction

The domain of P has already been restricted to 2r. As shown in the previous section it is
required that gcd(4r − 4, n) = 1 and gcd(4r − 2, n) = 1, but it is known that a 2-EPRP
implies 2n−1−1 ≡ 0 mod n. Hence by choosing r such that gcd((r−1)(2r−1), n−1) ≤ 3 by
the extended Euclidean algorithm M(r−1)(2r−1)+N(n−1) ≤ 3 for some integers M and
N , the domain 2r is further reduced and the two GCDs can be replaced with gcd(7, n) = 1
and gcd(3, n) = 1.

20.6 Fusion into 2 Selfridges

Combining back the 2-EPRP test with the LPRP chain test for z by multiplication gives:
(2z)

n+1
2 = 2 (mod n, z2 − (4

r

2
− 2)z + 1). It is now shown that this can be computed with

2 Selfridges.
Let sz+ t be the intermediate value during left-right binary exponentiation of the base

2z. For squaring: (sz+t)2 = s(as+2t)z+(t−s)(t+s) (mod n, z2−az+1) and multiplying
by the base where the current bit is a 1 in the binary expansion: (sz+t)(2z) = 2(as+t)z−2s
(mod n, z2 − az + 1) where a = 4r

2
− 2 which in practice is assumed to be small. Left-

right exponentiation at each stage is then dominated by the two multiplications and two
modular reductions i.e. s by as+2t mod n and t−s by t+s mod n. Thus it is 2 Selfridges.

20.7 A Practical Algorithm

A practical algorithm written in PARI/GP is now given which is 1 + 2 Selfridges:
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{RDPRP(n)=local(r,t,k);

if(n==2||n==3||n==7,return(1));

if(n<2||n%2==0||n%3==0||n%7==0||issquare(n),return(0));

k=kronecker(2,n);

if(Mod(2,n)^((n-1)/2)!=k,return(0));

r=0;t=Mod(4,n)^r;

while(kronecker(lift(t)-8,n)!=-1||gcd((r-1)*(2*r-1),n-1)>3,r++;t*=4);

Mod(Mod(z,n),z^2-(t/2-2)*z+1)^((n+1)/2)==k;}

The above code is only a guide; Some trial division could be performed as well for instance.
Furthermore, like the BPSW test, the 2-EPRP and LPRP chain tests can be made stronger.

20.8 Test Results

There are 118, 968, 378 odd numbers in Feitsma’s list of 2-PSPs ≤ 264 [13]. Of these
63, 912, 692 are 2-EPRP. No pseudoprimes were found with these against the RDPRP
test.. All numbers n ≤ 5 · 1013 pass the LPRP-chain(n, 4r

2
− 2, 1) test for all applicable

r, with and without the further GCD restriction prevoiusly given, and for the 2 Selfridge
version.

By sampling Feitsma’s list it was found that on average the domain of a 2-EPSP n was
reduced to about n0.408. If the GCD method with a strong discriminant were employed
the domain of the exponent r itself would be reduced by a factor of about 0.16 making the
domain of an LPRP chain n about n0.065. One could say that this paper’s method is about
n0.935 times better than choosing P linearly.

On the other hand the counts of 2-PSPs that are also Euler pseudoprimes and pseudo-
prime for LPRP(n, P , 2) with J(P 2 − 8, n) = −1, gcd(P 2 − 2, n) = 1, gcd(P 2 − 4, n) = 1,
gcd(P, n) = 1 and 1 ≤ P ≤ n−1

2
are tabulated as follows, along with the expectation of the

total number of pseudoprimes for any r of this paper’s test and the probability of the test
RDPRP failing:

Digits #2-EPSPs Count 100.935×digits Lower Exp’n Upper Exp’n Probability
4 11 0 5495 0 0 0
5 24 26 47315 0.000549509 0.004731574 10−13

6 78 98 407380 0.000240562 0.002071225 10−15

7 261 312 3507518 0.000088952 0.00076587 10−17

8 696 1608 30188517 0.000053246 0.000458444 10−19

9 1868 15072 260015956 0.000057966 0.000499081 10−21

10 4776 101630 1778279410 0.000057151 0.000390861 10−23

For example for all 10 digit numbers tested with the method presented in this paper have
a total expectation of between 0.000057151 and 0.000390861 pseudoprimes. Consequently
a 10 digit composite number has about 10−23 chance of passing the test RDPRP.

If a pseudoprime is found for some r then there will be spectacularly any number
between n0.2 and n0.999... of other r failures due to the multiplicative order of 2 modulo n.
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20.9 Another Test

The domain of an LPRP test is restricted to P = 3r and Q = −3. Thus the test for n such
that gcd(6, n) = 1 is essentially

xn+1 ≡ −3 (mod n, x2 − 3rx− 3)

where the Jacobi symbol of the discriminant 9r +12 over n is the strong value of −1, with
gcd(r − 1, n− 1) = 1.

The LPRP(n, 3r, −3) test is strengthened into a base −3 EPRP test of n and a test

for z
n+1
2 equal to the Jacobi symbol of −3 over n working modulo n and z2− ( 9r

−3
−2)z+1.

That is a 3-EPRP and an LPRP chain test.
Consequently working over Zn[z]/(z

2−(P
2

Q
−2)z+1) that z

n+1
2 should also be equivalent

to J(Q,n). Now a substitution is made of 3r for P and −3 for Q.
We want to avoid z2 ± z + 1 in our testing because otherwise finding counterexamples

becomes easier. It seems that only z2 − z + 1, which has discriminant −3, needs to be
avoided for Q = −3. Thus z2 − (−32r−1 − 3 + 3− 2)z + 1 is key and 32r−2 + 1 = 0 should
be avoided. That is 34(r−1) = 1 can be avoided by taking gcd(r − 1, n− 1).

Combining back the base −3 EPRP test with the LPRP chain test for z by multipli-
cation gives: (−3z)

n+1
2 = −3 (mod n, z2 − (−32r−1 − 2)z + 1). It is now shown that this

can be computed with 2 Selfridges. Let sz + t be the intermediate value during left-right
binary exponentiation of the base −3z. For squaring: (sz+ t)2 = s(as+2t)z+(t−s)(t+s)
(mod n, z2− az+1) and multiplying by the base where the current bit is a 1 in the binary
expansion: (sz + t)(−3z) = −3(as + t)z + 3s (mod n, z2 − az + 1) where a = −32r−1 − 2
which in practice is assumed to be small. Left-right exponentiation at each stage is then
dominated by the two multiplications and two modular reductions i.e. s by as+2t mod n
and t− s by t+ s mod n. Thus it is 2 Selfridges.



Chapter 21

Beyond Quadratic

21.1 The Perrin Sequence

Perrin’s sequence 3, 0, 2, 3, 2, 5, 5, 7 . . . can be defined formally by initial values P0 = 3,
P1 = 0, P2 = 2 with the recurrence relation Pn = Pn−2 + Pn−3 for n ≥ 3.[8][9][10][11][12]

It is not shown here that each binary digit of left-right binary exponentiation of P can
be calculated with 6 multiplications and respectively 6 modular reductions plus sundry
additions and subtractions.

The existence of Perrin pseudoprimes has hitherto made it a poor test when compared
with the quicker Baillie-PSW [1] test which has no known counterexamples, although it
is believed there are infinitely many counterexamples to the Baillie-PSW test albeit each
with a large number of digits.

21.2 Extending the Perrin Sequence

A novel approach is taken; For n ≥ 9 choose a small k : 3 ≤ k ≤ n with xn ̸≡ x
(mod n, xk − x− 1). With increasing k, the total number of multiplications with modular
reductions for finding a suitable k after reaching t tests for a probable prime is given by
(log2n)Σ

t+2
k=3

k(k+1)
2

with the chance thereof (t+2)!−1
(t+2)!

for suitability.

With the above non-equivalence condition met and xn (mod n, xk − x − 1) already
calculated there are two required checks: (i) check gcd(A, n) = 1 where A is the resulting
coefficient of xk−1 from the exponentiation; (ii) After the inexpensive calculation (xn)k

(mod n, xk − x− 1) check that xkn − xn − 1 ≡ 0 (mod n, xk − x− 1). Here is the function
TPPPE written in the number theory package PARI/GP interpreted language [8]:

{

kill(x);TPPPE(n)=my(k=2,X=x);

while(X==x,k++;X=Mod(Mod(x,n),x^k-x-1)^n);

gcd(polcoef(lift(lift(X)),k-1),n)==1&&X^k-X-1==0;

}
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Substantial testing has been done without finding a single extended pseudoprime: All:
9 ≤ n ≤ 1011; All of Jan Feitsma’s base 2 Fermat pseudoprimes less than 264 [13]; and
all Perrin pseudoprimes provided by Holger Stephan at his internet website [14]; All of
Jacobsen’s PPPs at OEIS [15]

21.3 The General Test

For k > 2 let
f(x) = xk − 1− Σk−2

i=1 aix
i

where the ai are either unity or not all zeroes, so as to avoid cyclotomy. It is stipulated
that f(x) is not of the degenerative form where, for all i, gcd(k, i)|b for some b > 1.

Note that the sum of the roots is 0 and the product of the roots is a unit.
The following are valid examples:

x3 − x− 1
x4 − x− 1
x5 − x− 1
x5 − x2 − 1
x5 − x3 − 1
x5 − x2 − x− 1
x5 − x3 − x2 − 1
x5 − x3 − x2 − x− 1
x12 − x9 − x2 − 1

whereas the following are invalid examples:

x4 − x2 − 1
x6 − x2 − 1
x6 − x3 − 1
x6 − x4 − 1
x8 − x2 − 1
x8 − x4 − 1
x8 − x6 − 1
x8 − x4 − x2 − 1
x8 − x6 − x4 − 1
x8 − x6 − x4 − x2 − 1

With a pseudo-primality test in mind we require for n that xn ̸≡ x (mod n, f(x)).
As such, after exponentiation, check that the greatest common divisor of the resulting
coefficient of xk−1 with n is 1. Secondly check that f(xn) ≡ 0 (mod n, f(x)).
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