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Abstract

A Lucas probable prime test shall be presented with a restricted domain. The practical transformed version of it as a
base 2 Euler probable prime test plus a simpler Lucas probable prime test is examined along with a “fused” probable prime
test. The practical reduced domain Euler plus Lucas algorithm is given. Some statistical results are presented finally.

1 Introduction

There have been many publications regarding probable prime tests over the last forty years or so since the seminal paper
of Baillie, Pomerance, Selfridge and Wagstaff (BPSW) [1]. The basic idea of BPSW is to perform a strong base 2 Fermat
probable prime test in conjunction with an Lucas probable prime test with carefully chosen parameters.

The BPSW is very fast and reliable; It is 1 + 3 Selfridges, where a Selfridge [2] is the time taken to do a Fermat probable
prime test, and to date nobody has yet claimed the $30 offered for a counterexample or a proof that none exist. In contrast,
Elliptic Curve Primality Proving (ECPP) [3, p368] is of the order O(log(n)4+ϵ) for some ϵ > 0.

For the Lucas component of the BPSW test, parameters are chosen from Z by one of two methods, one given by Selfridge
and the other by Pomerance in their paper. In this paper the domain of a parameter is restricted to 2r for some integer r.
Then r itself is restricted after the full Lucas probable prime test is transformed into a computationally efficient base 2 Euler
probable prime test plus a simple Lucas probable prime chain test. The resulting restricted domain test is 1 + 2 Selfridges
and a brief look is taken to see how a “fused” probable prime test can be performed in 2 Selfridges.

A practical algorithm is given and finally some statistical results are also presented.

2 Definitions

A Fermat probable prime (PRP) is an n for which an ≡ a mod n for some a. It is called a-PRP. If gcd(a, n) = 1 it can be
divided by a:

an−1 ≡ 1 (mod n).

There are Fermat pseudoprimes (PSP) to the PRP test such as 341 which is 2-PSP. There are also Carmichael (absolute
pseudoprime) numbers for which an = a mod n for all bases a; For example 561.

An Euler probable prime (EPRP) is one for which a
n−1
2 ≡ J(a, n) mod n, where J(a, n) is the Jacobi symbol of a over n.

A strong Fermat probable prime (SPRP) [3, pp136-138] is calculated as follows. Let n = 2sd+1 where d is odd. Compute
ad mod n. If it is ±1 declare n do be a-SPRP. Square up to s− 1 times checking for equivalence to −1. If so declare n to be
a-SPRP.

A (proper) Lucas probable prime (LPRP) is test of odd n over the quotient ring Zn[x]/(x
2−Px+Q) with a strong Jacobi

symbol of the discriminant P 2 − 4Q over n, i.e. equal to −1 so that the square root of the discriminant has no solution in Zn

which ensures the Frobenius automorphism forms the augmented solutions for x:

x =
P ±

√
P 2 − 4Q

2
.

An LPRP is calculated thusly: xn+1 ≡ Q (mod n, x2 − Px + Q) such that x2 = Px − Q is repeatedly used to calculate
powers of x, usually by a left-right binary exponentiation method. The general LPRP(n, P , Q) test has many pseudoprimes,
for example LPRP(51, 17, 25). The Q value could be restricted to 2 and then test LPRP(n, P , 2), but again there are many
pseudoprimes which can be found easily, for example LPRP(1387, 511, 2).

An LPRP(n, P , 1) test can be very efficiently calculated by a Lucas binary exponentiation chain and is denoted in this
paper as an LPRPC [3, p147].

Define a strong Lucas probable prime chain (SLPRPC) test as follows. Let n = 2te − 1 where e is odd. Calculate the
chain up to the power of e. If it is ±1 declare n to be SLPRPC. Square the chain up to t − 1 times further checking for a
result of −1 and if this is the case declare n to be SLPRPC.
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3 Domain Restriction

The domain of an LPRP test has its P restricted to 2r for integer r and Q to 2. Thus x2 − 2rx + 2 = 0 where the Jacobi
symbol of the discriminant 4r − 8 over n is the strong value of −1. The rationale is that a smaller domain will produce fewer
pseudoprimes. Given that the multiplicative order of 2 over Zn is much smaller then the domain of freely varying P across
Zn, this seems a good way to greatly reduce the number of pseudoprimes. With the aid of a few choice GCDs, shown in the
next section, finding a pseudoprime is very difficult. In a later section r itself is restricted, further diminishing the domain 2r.

4 Transformation

The LPRP(n, 2r, 2) test is strengthened into a 2-EPRP test of n and a test for z
n+1
2 equal to the Jacobi symbol of 2 over

n working modulo n and z2 − ( 4
r

2 − 2)z + 1. That is a 2-EPRP and an LPRPC test. This can shown with x2 − Px + Q
companion matrix calculations:

(
P −Q
1 0

)n+1

=

(
P 2 −Q −PQ

P −Q

)n+1
2

=

(
P 2

Q − 1 −P
P
Q −1

)n+1
2 (

Q 0
0 Q

)n+1
2

.

The characteristic equation of the left hand matrix of the product (the determinant of which is 1) is z2−(P
2

Q −2)z+1 = 0.

The right hand matrix of the product raised to power of n+1
2 is equivalent J(Q,n)Q mod n and dividing by Q which is

assumed to be invertible mod n then Q
n−1
2 ≡ J(Q,n) mod n. Consequently working over Zn[z]/(z

2 − (P
2

Q − 2)z + 1) that

z
n+1
2 should also be equivalent to J(Q,n).
With the substitution of 2r for P and 2 for Q, note that if either gcd(4r − 2, n) or gcd(4r − 4, n) is not 1 then over some

factor of n the quadratic polynomial z2 − ( 4
r

2 − 2)z + 1 would be cyclotomic, making it easier to find pseudoprimes. Also
note that trivially gcd(2r, n) = 1 for odd n.

5 Further Domain Restriction

The domain of P has already been restricted to 2r. As shown in the previous section it is required that gcd(4r − 4, n) = 1
and gcd(4r − 2, n) = 1, but it is known that a 2-EPRP implies 2n−1 − 1 ≡ 0 mod n. Hence by choosing r such that
gcd((r − 1)(2r − 1), n − 1) ≤ 3 by the extended Euclidean algorithm M(r − 1)(2r − 1) +N(n− 1) ≤ 3 for some integers M
and N , the domain 2r is further reduced and the two GCDs can be replaced with gcd(7, n) = 1 and gcd(3, n) = 1.

6 Fusion into 2 Selfridges

Combining back the 2-EPRP test with the LPRPC test for z by multiplication gives: (2z)
n+1
2 = 2 (mod n, z2−( 4

r

2 −2)z+1).
It is now shown that this can be computed with 2 Selfridges.

Let sz + t be the intermediate value during left-right binary exponentiation of the base 2z. For squaring: (sz + t)2 =
s(as + 2t)z + (t − s)(t + s) (mod n, z2 − az + 1) and multiplying by the base where the current bit is a 1 in the binary
expansion: (sz + t)(2z) = 2(as+ t)z − 2s (mod n, z2 − az + 1) where a = 4r

2 − 2 which in practice is assumed to be small.
Left-right exponentiation at each stage is then dominated by the two multiplications and two modular reductions i.e. s by
as+ 2t mod n and t− s by t+ s mod n. Thus it is 2 Selfridges.

7 A Practical Algorithm

A practical algorithm written in PARI/GP is now given which is 1 + 2 Selfridges:

{RDPRP(n)=local(r,t,k);

if(n==2||n==3||n==7,return(1));

if(n<2||n%2==0||n%3==0||n%7==0||issquare(n),return(0));

k=kronecker(2,n);

if(Mod(2,n)^((n-1)/2)!=k,return(0));

r=0;t=Mod(4,n)^r;

while(kronecker(lift(t)-8,n)!=-1||gcd((r-1)*(2*r-1),n-1)>3,r++;t*=4);

Mod(Mod(z,n),z^2-(t/2-2)*z+1)^((n+1)/2)==k;}

The above code is only a guide; Some trial division could be performed as well for instance. Furthermore, like the BPSW
test, the 2-EPRP and LPRPC tests can be made stronger.
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8 Test Results

There are 118, 968, 378 odd numbers in Feitsma’s list of 2-PSPs ≤ 264 [4]. Of these 63, 912, 692 are 2-EPRP. No pseudoprimes
were found with these against the RDPRP test of §7. All numbers n ≤ 5 · 1013 pass the LPRPC(n, 4r

2 − 2, 1) test for all
applicable r, with and without the further GCD restriction given in §5, and for the 2 Selfridge version of §6.

By sampling Feitsma’s list it was found that on average the domain of a 2-EPSP n was reduced to about n0.408. If the
GCD method with a strong discriminant were employed the domain of the exponent r itself would be reduced by a factor of
about 0.16 making the domain of an LPRPC n about n0.065. One could say that this paper’s method is about n0.935 times
better than choosing P linearly.

On the other hand the counts of 2-PSPs that are also Euler pseudoprimes and pseudoprime for LPRP(n, P , 2) with
J(P 2 − 8, n) = −1, gcd(P 2 − 2, n) = 1, gcd(P 2 − 4, n) = 1, gcd(P, n) = 1 and 1 ≤ P ≤ n−1

2 are tabulated as follows, along
with the expectation of the total number of pseudoprimes for any r of this paper’s test and the probability of the test RDPRP
failing:

Digits #2-EPSPs Count 100.935×digits Lower Expectation Upper Expectation Probability
4 11 0 5495 0 0 0
5 24 26 47315 0.000549509 0.004731574 10−13

6 78 98 407380 0.000240562 0.002071225 10−15

7 261 312 3507518 0.000088952 0.00076587 10−17

8 696 1608 30188517 0.000053246 0.000458444 10−19

9 1868 15072 260015956 0.000057966 0.000499081 10−21

10 4776 101630 1778279410 0.000057151 0.000390861 10−23

For example for all 10 digit numbers tested with the method presented in this paper have a total expectation of between
0.000057151 and 0.000390861 pseudoprimes. Consequently a 10 digit composite number has about 10−23 chance of passing
the test RDPRP.

If a pseudoprime is found for some r then there will be spectacularly any number between n0.2 and n0.999... of other r
failures due to the multiplicative order of 2 modulo n.

9 Conclusion

It has been shown empirically that a 2-EPRP test plus an LPRPC(n, 4r

2 − 2, 1) test with J(4r − 8, n) = −1 and by taking
gcd(4r −2, n) = 1 and gcd(4r −4, n) = 1 makes any odd pseudoprimes very difficult to find: None were found. This is further
rarefied by taking gcd((r − 1)(2r − 1), n − 1) ≤ 3, and, like the BPSW test, by using a minimal suitable parameter value
makes finding a pseudoprime with RDPRP a very rare prospect indeed.

The author offers a first prize of £100 sterling for a single r that passes the test RDPRP for a composite. This need not
be a minimal r.
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