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Abstract

A single parameter cubic composite test for odd positive integers is given which relies on the discriminant
always being a square integer. This test has no known counterexample despite extensive verifications. As well
as a comparison with the Baillie-PSW tests, a related quadratic composite test is briefly examined which also
has no known counterexample.

1 Introduction

Grantham gives an excellent introduction in his paper Frobenius Pseudoprimes [1], in which various pseudoprime
tests are performed over polynomials in one variable. Therein simultaneous modulo n and variously modulo a
polynomial are considered. We formally define working (mod n, fa) as working out our arithmetic in the quotient
ring Zn[x]/fa, where fa is a polynomial. Note that both n ≡ 0 (mod n, fa) and fa ≡ 0 (mod n, fa) (∗).

In some sense we herein build upon the pseudoprimes paper by Adams and Shanks [2]. We shall make a
computational cost comparison of the cubic test with the Baillie-PSW tests. We shall also take a brief look at a
quadratic composite test based on the charateristic equation g = x2 − 2x− 4.

This paper has sections on each of the conditions to construct a cubic composite test algorithm. It does not
consider sieving for primes, trial division and other techniques for finding factors, nor other quick tests, all of
which might speed up batch testing of candidate composites.

2 First g.c.d.

We consider depressed cubic polynomials of the form fa = x3 − ax− a simply with gcd(a, n) = 1.

3 Second g.c.d.

We henceforth restrict fa with the parametric equation a = 7 + k(k − 1). The cubic polynomials x3 − ax − a
have discriminants 4a3 − 27a2. Since squares can be factored out of Kronecker symbols, only 4a − 27 can be
considered. Making the substitution in terms of k, this expression becomes 28+ 4k(k− 1)− 27 which is equal to
4k(k − 1) + 1; is equal to (2k − 1)2. Thus the Kronecker symbols of the discriminants of fa are never negative.
This implies that each fa has three real roots. In practice the greatest common divisors can be taken instead:
gcd(2k − 1, n). Only a g.c.d. of 1 will be of interest to us for primality testing purposes.

4 Third g.c.d.

Consider the following necessary characteristic polynomial for the companion matrix of x3 − ax− a:∣∣∣∣∣∣∣∣∣∣∣∣∣
z −

 0 a a
1 0 0
0 1 0

2

−a

∣∣∣∣∣∣∣∣∣∣∣∣∣
= z3 + 2z2 + z + 1/a.

If a = 1
2 then the right hand side of the equation factors as (z + 2)(z2 + 1). So gcd(2a − 1, n) = 1 can be

checked. This g.c.d. test arose historically when developing the cubic test of this paper. It was needed when
the necessary condition for prime n that x3n − axn − a ≡ 0 (mod n, x3 − ax − a) was satisfied. For example
composite n = 13040299 and a = 69121405197. We cannot determine whether this g.c.d. is superfluous for the
present cubic test. Our testing includes it.
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5 Reinforcing testing over cubic polynomials

Formally we compute B ≡ xn−1 (mod n, fa). The cases where B ≡ 1 are of no interest but rather a result of
B ≡ sx2 + tx+ u is. We can then cheaply form and check the stronger non-trivial necessary condition:

B2 +B + 1 ≡ −x2 + x+ a (mod n, x3 − ax− a) (∗∗)

. Given that x and B−1 both have multiplicative inverses for prime n, the derivation of this working (mod n, fa)
throughout is as follows:

x3 − ax− a ≡ 0 By definition from (∗).
x3 ≡ ax+ a Add ax+ a.
x3 ≡ a(x+ 1) Factor out a.
x3n ≡ an(x+ 1)n Raise to the nth power.
x3n ≡ a(x+ 1)n Fermat’s Little Theorem on an.
x3n ≡ a(xn + 1) Freshman’s Dream for binomials.

x3n − x3 ≡ a(xn + 1)− a(x+ 1) Subtract identity.
x3n − x3 ≡ a(xn − x) Collect terms.

x3(x3n−3 − 1) ≡ ax(xn−1 − 1) Factor out x’s.
x3(B3 − 1) ≡ ax(B − 1) Substitute to B.
x2(B3 − 1) ≡ a(B − 1) Divide by x.

x2(B − 1)(B2 +B + 1) ≡ a(B − 1) Factor B3 − 1.
x2(B2 +B + 1) ≡ a Divide by B − 1.
x2(−x2 + x+ a) ≡ a Substitute the hypothetical identity from (∗∗).
−x4 + x3 + ax2 ≡ a Multiply out.

(−ax2 − ax) + (ax+ a) + ax2 ≡ a Use the identity x3 ≡ ax+ a.
a ≡ a Collect terms.

6 Accelerating the search for a suitable B

Recall the definition B ≡ xn−1 (mod n, fa). Note that if a = 7 + k(k − 1) is prime then k has to be 0 or 1 mod

3. More often than not, for prime a and prime n it is true that B ≡ 1 (mod n, x3 − ax − a) implies n
a−1
3 ≡ 1

(mod a). There is no known case of this implication for primes a and n to the contrary. So the latter equation
is a very useful screening test for the former equation. This does not mean that composite a cannot be utilised;
However in a practice using prime a reduces the need to re-test with a different a and potentially saves a lot of
computation of another B. If k ≡ 2 (mod 3) is used then a is divisible by 3. If such an a or another composite

a is used there is no need to check na−1 ≡ 1 (mod a) or n
a−1
3 ≡ 1 (mod a). After all Dirichlet’s theorem about

arithmetic progressions ensures there exists a prime of the form a+ dn for some d, but we cannot say for certain
such a prime will be of the form 7 + k(k − 1).

7 Cubic test summary

The composite test for odd n > 1 over fa = x3 − ax− a with prime a = 7 + k(k − 1) is as follows:

• If n is a perfect cube declare n as a composite.

• If n
a−1
3 ≡ 1 (mod a) try another prime a

• If a = n declare n as a prime.

• Let g = gcd((2k − 1)a(2a− 1), n).

• If g = n try another prime a.

• If 1 < g < n declare n as a composite.

• Let B ≡ xn−1 (mod n, fa).

• If B ≡ 1 try another prime a.

• If B2 +B + 1 ̸≡ −x2 + x+ a declare n as a composite.

• Otherwise declare n as a probable prime by the cubic test.

8 Verifications of the cubic test

All verifications produced no pseudoprimes for the cubic composite test. The following verifications except the
first two were run in the PARI/GP interpreter, some using Feitsma’s base 2 Fermat pseudoprimes < 264 [3] and
Goutier’s list of Carmichael numbers < 1022 [4]. See the appendix for the PARI/GP code.
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(i) All prime and composite a = 7 + k(k − 1) for a < n and n < 16× 106 (The C Programming Language).

(ii) Minimal k for odd n < 36× 1012 (The C Programming Language).

(iii) All k ≤ 600 for Carmichael numbers n < 1022.

(iv) First 20 B: B ̸≡ 1 for base 2 for the Fermat base 2 pseudoprimes n < 264.

(v) All k < n for Fermat base 2 pseudoprimes n < 15× 107.

(vi) All a = 2r for all r up to the multiplicative order of 2 modulo n for n < 1012.

(vii) All k < n = pq semi-primes: primes p < 76991 and q where q = 1 + 2j(p− 1) for 4 ≤ j ≤ 16.

(viii) All k < n = pq semi-primes: primes p < 2729 and q where q = 1 + 2j(p2 − 1) for 4 ≤ j ≤ 16.

(ix) All k < n = pq semi-primes: primes p < 2917 and q where q = 1 + 2j(p2 + p+ 1) for 4 ≤ j ≤ 16.

(x) First 20 B: B ̸≡ 1 for odd n < 109.

9 Comparison with Baillie-PSW

The (n−1)th power of x is computed over n and fa. For small a this computation can be achieved using O(6 log2 n)
multiplications and only O(3 log2 n) modular reductions over n in the main with sundry multiplications of small
numbers and additions. With fast Fourier transform (FFT) arithmetic the test requires O(3 log2 n) forward
transforms and O(6 log2 n) inverse transforms. This makes it very competitive against the Baillie-PSW tests
[5][6], which each require O(4 log2 n) multiplications and O(4 log2 n) modular reductions; and O(4 log2 n) forward
FFT and O(4 log2 n) inverse transforms.

Test MUL MOD dFFT iFFT
Cubic 6 3 3 6
BPSW 4 4 4 4

Figure 1: Test computational cost comparison

Note that there would be easily found counterexamples to the Baillie-PSW tests if the parameters were free
and not just minimal, unlike the cubic composite test given in this paper.

10 A quadratic test

The only a for which the cubic fa = x3 − ax− a is reducible is a = 8. Then f8 = (x+2)g where g = x2 − 2x− 4.
This quadratic expression g is irreducible and its discriminant is 20. For jacobi(5, n) = −1 we can test base

−4 Euler probable primality in conjunction with z
n+1
2 ≡ jacobi(−1, n) (mod n, z2 + 3z + 1). As such it passes

Feitsma’s base 2 Fermat pseudoprime list for n < 264. It is equivalent to Selfridge’s $500 challenge [7] for a
simultaneous base 2 Fermat probable prime and a pseudoprime with respect to the Fibonacci characteristic
polynomial x2 − x− 1 for n congruent to 2 or 3 modulo 5.

11 Conclusion

The cubic test examined in this paper has not been shown to be a deterministic prime proving algorithm.
Moreover one may try to adapt the ideas presented in Pomerance’s paper [8] to show that we can expect to
find pseudoprimes for this cubic test. Like the Fermat probable prime test bn−1 ≡ 1 (mod n) which results in
non-trivial pseudoprimes if the base b is allowed to vary freely, tests based on Lucas sequences with respect to
x2−Px+Q are also weak in this sense; even if P = c, Q = 1 and the Kronecker symbol of its discriminant c2−4
over n is −1. However the cubic test over x3 − ax− a presented here seems insusceptible to such a failing.
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Appendix – PARI/GP code

Here is code for one way of computing B = xn−1 (mod n, x3 − ax− a):

{cubicB(n,k)=my(a=7+k*(k-1)%n,s=0,t=1,u=0,LEN=#binary(n-1));

for(i=2,LEN,

s2=a*sqr(s);t2=sqr(t);u2=sqr(u);

st=2*a*s*t;tu=2*t*u;us=2*u*s;

if(bittest(n-1,LEN-i),

u=a*(s2+us+t2);s=s2+st+tu;t=u+u2+st,

s=s2+us+t2;t=s2+st+tu;u=st+u2);

s%=n;t%=n;u%=n);

Mod(Mod(s*x^2+t*x+u,n),x^3-a*x-a);}

Here is code for the Cubic test using minimal k:

{cubicTest(n)=my(k,a,B,g);

if(n<2||ispower(n,3),

return(0));

k=0;B=1;

while(B==1,

k++;a=7+k*(k-1);

while(!isprime(a)||Mod(n,a)^((a-1)/3)==1,

k++;a=7+k*(k-1));

if(a==n,

return(1));

g=gcd((2*k-1)*a*(2*a-1),n);

if(1<g&&g<n,

return(0));

if(g==1,

B=cubicB(n,k)));

B^2+B+1==-x^2+x+a;}

Test (iii):

{V=readvec("~/Goutier/carm_10e22");}

{for(k=1,600,

a=7+k*(k-1);

for(v=1,#V,

n=V[v];

if(gcd((2*k-1)*a*(2*a-1),n)==1,

B=Mod(Mod(x,n),x^3-a*x-a)^(n-1);

if(B^2+B+1==-x^2+x+a,

print([n,k,a])))));}

Test (iv):

{V=readvec("~/Feitsma/PSP-2");}

for(v=1,#V,n=V[v];

k=0;a=7+k*(k-1);cnt=20;

while(cnt,

B=1;

while(B==1,

k++;a=7+k*(k-1);

while(k%3==2||!ispseudoprime(a)||Mod(n,a)^((a-1)/3)==1||gcd((2*k-1)*a*(2*a-1),n)!=1,

k++;a=7+k*(k-1));

B=Mod(Mod(x,n),x^3-a*x-a)^(n-1));

cnt--;

if(B^2+B+1==-x^2+x+a,

print([n,k,a])));}

Test (v):

{V=readvec("~/Feitsma/PSP-2");}

{for(v=1,#V,

n=V[v];if(n>1.5*10^8,break};

for(k=1,n/2,

a=7+k*(k-1)%n;

B=Mod(Mod(x,n),x^3-a*x-a)^(n-1);

if(B^2+B+1==-x^2+x+a,

print([n,k,a]))));}
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Test (vi):

{V=readvec("~/Feitsma/PSP-2");}

{for(v=1,#V,

n=V[v];if(n>10^12,break};

z=znorder(Mod(2,n));

for(r=1,z,

a=lift(Mod(2,n)^r);

if(kronecker(4*a-27,n)==1,

B=Mod(Mod(x,n),x^3-a*x-a)^(n-1);

if(B^2+B+1==-x^2+x+a,

print([n,a])))));}

Test (vii):

{tst(n,k)=my(a=7+k*(k-1),B=Mod(Mod(x,n),x^3-a*x-a)^(n-1));

gcd((2*k-1)*a*(2*a-1),n)==1&&B^2+B+1==-x^2+x+a;}

{tst1(p,q)=local(n=p*q,u=[],k,a,B);

for(k=1,p,a=7+k*(k-1);B=Mod(Mod(x,p),x^3-a*x-a)^(n-1);

if((n%(p-1)==1)||B^2+B+1==-x^2+x+a,u=concat(u,k)));Mod(u,p);}

{tst2(p,q)=local(n=p*q,up,uq,k,V=[]);

up=tst1(p,q);if(#up,uq=tst1(q,p);if(#uq,

for(i=1,#up,for(j=1,#uq,k=lift(chinese(up[i],uq[j]));

if(tst(n,k),V=concat(V,k))))));V=vecsort(V);

if(#V,for(v=1,#V,t=V[v];print([n,t,7+t*(t-1)])));V;}

{forprime(p=3,100000,for(k=4,16,q=1+2*k*(p-1);

if(ispseudoprime(q),tst2(p,q))));

print("\\\\ "round(gettime/1000)" seconds");}

Test (viii):

{forprime(p=3,100000,for(k=4,16,q=1+2*k*(p^2-1);

if(ispseudoprime(q),tst2(p,q))));

print("\\\\ "round(gettime/1000)" seconds");}

Test (ix):

{forprime(p=3,100000,for(k=4,16,q=1+2*k*(p^2+p+1);

if(ispseudoprime(q),tst2(p,q))));

print("\\\\ "round(gettime/1000)" seconds");}

Test (x):

{forcomposite(n=9,10^9,

if(n%2==1&&!ispower(n,3),

k=0;a=7+k*(k-1);cnt=20;

while(cnt,

B=1;

while(B==1,

k++;a=7+k*(k-1);

while(k%3==2||!ispseudoprime(a)||Mod(n,a)^((a-1)/3)==1||gcd((2*k-1)*a*(2*a-1),n)!=1,

k++;a=7+k*(k-1));

B=Mod(Mod(x,n),x^3-a*x-a)^(n-1));

cnt--;

if(B^2+B+1==-x^2+x+a,

print([n,k,a])))));}
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